A framework for bilevel optimization that enables stochastic and global variance reduction algorithms

M. Dagréou, P. Ablin, S. Vaiter, T. Moreau

https://arxiv.org/abs/2201.13409

February 9, 2023

Motivating example

- 1 Motivating example
- 2 Problem statement
- 3 Related work
- 4 A new framework for stochastic bilevel optimization
- 5 Numerical experiments
- 6 Conclusion

Classification problem

Setup:

- Data $(x_i)_{1 \le i \le n}$ in \mathbb{R}^p , target binary $(y_i)_{1 \le i \le n}$ in $\{-1,1\}$
- Goal: find a parameter $\theta^* \in \mathbb{R}^p$ to predict the class y by $\operatorname{sign}(\langle x, \theta^* \rangle)$

Logistic regression

Logistic loss:

$$G(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle x_i, \theta \rangle))$$

Training:

$$heta^* \in rg \min_{ heta \in \mathbb{R}^p} extit{G}(heta)$$

Avoiding overfitting

Regularized logistic loss:

$$G(\theta, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle x_i, \theta \rangle)) + \frac{\lambda}{2} \|\theta\|_2^2$$

Training:

$$\theta^*(\lambda) \in \operatorname*{arg\,min}_{\theta \in \mathbb{R}^p} G(heta, \lambda)$$

Source: https://fr.wikipedia.org/wiki/Surapprentissage

Avoiding overfitting

Regularized logistic loss:

$$G(\theta, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle x_i, \theta \rangle)) + \frac{\lambda}{2} \|\theta\|_2^2$$

Training:

$$heta^*(\lambda) \in rg \min_{ heta \in \mathbb{R}^p} G(heta, \lambda)$$

Source: https://fr.wikipedia.org/wiki/Surapprentissage

How to choose λ ?

1 Define a grid $\{\lambda_1, \ldots, \lambda_K\}$

- **1** Define a grid $\{\lambda_1, \ldots, \lambda_K\}$
- **2** Train the model for each λ_k to get the parameters $\theta^*(\lambda_1), \dots, \theta^*(\lambda_K)$

- **1** Define a grid $\{\lambda_1, \ldots, \lambda_K\}$
- **2** Train the model for each λ_k to get the parameters $\theta^*(\lambda_1), \ldots, \theta^*(\lambda_K)$
- 3 Evaluate the performances on validation samples $(x_i^{\text{val}}, y_i^{\text{val}})_{1 \leq i \leq m}$ not used in the training phase by computing

$$F(heta^*(\lambda_k)) = rac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i^{\mathrm{val}} \langle x_i^{\mathrm{val}}, heta^*(\lambda_k)
angle)) \; .$$

- **1** Define a grid $\{\lambda_1, \ldots, \lambda_K\}$
- **2** Train the model for each λ_k to get the parameters $\theta^*(\lambda_1), \dots, \theta^*(\lambda_K)$
- 3 Evaluate the performances on validation samples $(x_i^{\text{val}}, y_i^{\text{val}})_{1 \leq i \leq m}$ not used in the training phase by computing

$$F(\theta^*(\lambda_k)) = rac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i^{\mathrm{val}} \langle x_i^{\mathrm{val}}, \theta^*(\lambda_k) \rangle)) \; .$$

4 Keep the value of λ that gives the lowest value of $F(\theta^*(\lambda))$.

Grid search as a bilevel optimization problem

Grid search = "Find λ such that $F(\theta^*(\lambda))$ is the lowest possible."

Grid search as a bilevel optimization problem

Grid search = "Find λ such that $F(\theta^*(\lambda))$ is the lowest possible."

Mathematical formalization: Bilevel optimization problem

$$\begin{cases} \min_{\lambda} h(\lambda) \triangleq F(\theta^*(\lambda)) \\ \theta^*(\lambda) \in \arg\min_{\theta \in \mathbb{R}^p} G(\theta, \lambda) \end{cases}$$

Grid search with multiple hyperparameters

Regularized logistic loss:

$$G(\theta, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle x_i, \theta \rangle)) + \frac{\lambda}{2} \|\theta\|_2^2$$

Grid search with multiple hyperparameters

Regularized logistic loss:

$$G(\theta, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle x_i, \theta \rangle)) + \frac{1}{2} \sum_{k=1}^{p} \lambda_k \theta_k^2$$

The number of trials increases exponentially with the dimension of λ .

Grid search with multiple hyperparameters

Regularized logistic loss:

$$G(\theta,\lambda) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle x_i, \theta \rangle)) + \frac{1}{2} \sum_{k=1}^{p} \lambda_k \theta_k^2$$

The number of trials increases exponentially with the dimension of λ .

Can we use first-order information in order to minimize $h(\lambda) = F(\theta^*(\lambda))$?

Problem statement

- 1 Motivating example
- 2 Problem statement
- 3 Related work
- 4 A new framework for stochastic bilevel optimization
- 5 Numerical experiments
- 6 Conclusion

Bilevel optimization in general

Bilevel optimization problem

$$\begin{cases} \min_{\lambda \in \mathbb{R}^d} h(\lambda) \triangleq F(\theta^*(\lambda), \lambda) & \text{Outer problem} \\ \theta^*(\lambda) \in \arg\min_{\theta \in \mathbb{R}^p} G(\theta, \lambda) & \text{Inner problem} \end{cases}$$

Neural Architecture Search

Darts [Liu et al. 2019]:

Differentiable Architecture Search

Goal: Find the best architecture of a Neural Network for a given task

Idea: Parametrize the probability of the architectures by λ

Bilevel formulation:

$$\left\{\begin{array}{l} \min_{\lambda \in \mathbb{R}^d} \mathcal{L}_{\mathrm{val}}(\theta^*(\lambda), \lambda) \\ \theta^*(\lambda) \in \mathop{\mathsf{arg}} \min_{\theta \in \mathbb{R}^p} \mathcal{L}_{\mathrm{train}}(\theta, \lambda) \end{array}\right.$$

Source: [Liu et al. 2019]

Deep Equilibrium Networks [Bai et al. 2019]

Idea: Replace the forward pass by a root finding problem $g(z, \theta) = 0$ **Training a DEQ:** Boils down to solve

$$\min_{\theta} \mathcal{L}(z^*(\theta)), \quad g(z^*(\theta), \theta) = 0$$

Gradient descent

Gradient descent on *h*:

$$\lambda^{t+1} = \lambda^t - \gamma^t \nabla h(\lambda^t)$$

Gradient of *h*?

Definition of *h*:

$$h(\lambda) = F(\theta^*(\lambda), \lambda), \quad \theta^*(\lambda) \in \argmin_{\theta \in \mathbb{R}^p} G(\theta, \lambda)$$

Gradient of *h*?

Definition of h:

$$h(\lambda) = F(\theta^*(\lambda), \lambda), \quad \theta^*(\lambda) \in \argmin_{\theta \in \mathbb{R}^p} G(\theta, \lambda)$$

Chain rule:

$$\nabla h(\lambda) = \nabla_2 F(\theta^*(\lambda), \lambda) + (\mathrm{d}\theta^*(\lambda))^\top \nabla_1 F(\theta^*(\lambda), \lambda)$$

Implicit differentiation

Optimality condition for $\theta^*(\lambda)$:

$$\nabla_1 G(\theta^*(\lambda), \lambda) = 0$$

Implicit differentiation

Optimality condition for $\theta^*(\lambda)$:

$$\nabla_1 G(\theta^*(\lambda), \lambda) = 0$$

Implicit function theorem:

$$d\theta^*(\lambda) = -\left[\nabla^2_{11}G(\theta^*(\lambda),\lambda)\right]^{-1}\nabla^2_{12}G(\theta^*(\lambda),\lambda)$$

Implicit gradient in practice

Gradient of h:

$$\nabla h(\lambda) = \nabla_2 F(\theta^*(\lambda), \lambda) - \nabla_{21}^2 G(\theta^*(\lambda), \lambda) \left[\nabla_{11}^2 G(\theta^*(\lambda), \lambda) \right]^{-1} \nabla_1 F(\theta^*(\lambda), \lambda)$$

Implicit gradient in practice

Gradient of h:

$$\nabla h(\lambda) = \nabla_2 F(\theta^*(\lambda), \lambda) - \nabla_{21}^2 G(\theta^*(\lambda), \lambda) \left[\nabla_{11}^2 G(\theta^*(\lambda), \lambda) \right]^{-1} \nabla_1 F(\theta^*(\lambda), \lambda)$$

■ Need to solve the inner optimization problem

Implicit gradient in practice

Gradient of h:

$$\nabla h(\lambda) = \nabla_2 F(\theta^*(\lambda), \lambda) - \nabla_{21}^2 G(\theta^*(\lambda), \lambda) \left[\nabla_{11}^2 G(\theta^*(\lambda), \lambda) \right]^{-1} \nabla_1 F(\theta^*(\lambda), \lambda)$$

- Need to solve the inner optimization problem
- Need to solve a linear system of size $p \times p$

Empirical Risk minimization

Classical ML setting:

$$F(\theta,\lambda) = \frac{1}{m} \sum_{j=1}^{m} F_j(\theta,\lambda), \quad G(\theta,\lambda) = \frac{1}{n} \sum_{i=1}^{n} G_i(\theta,\lambda)$$

Empirical Risk minimization

Classical ML setting:

$$F(\theta,\lambda) = \frac{1}{m} \sum_{j=1}^{m} F_j(\theta,\lambda), \quad G(\theta,\lambda) = \frac{1}{n} \sum_{i=1}^{n} G_i(\theta,\lambda)$$

Consequence: For large m and n, any single derivative is cumbersome to compute.

Aside: Stochastic optimization for single level problems

Single level problem:

$$\min_{\theta} f(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

Aside: Stochastic optimization for single level problems

Single level problem:

$$\min_{\theta} f(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

First-order stochastic optimization:

$$heta^{t+1} = heta^t -
ho^t g^t, \quad \mathbb{E}[g^t | heta^t] =
abla f(heta^t)$$

Aside: Stochastic optimization for single level problems

Single level problem:

$$\min_{\theta} f(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

First-order stochastic optimization:

$$heta^{t+1} = heta^t -
ho^t g^t, \quad \mathbb{E}[g^t | heta^t] =
abla f(heta^t)$$

Example: stochastic gradient descent [Robbins and Monro 1951]:

$$\theta^{t+1} = \theta^t - \rho^t \nabla f_i(\theta^t), \quad i \sim \mathcal{U}(\{1, \dots, n\})$$

Bilevel optimization case

$$F(\theta,\lambda) = \frac{1}{m} \sum_{i=1}^m F_j(\theta,\lambda), \quad G(\theta,\lambda) = \frac{1}{n} \sum_{i=1}^n G_i(\theta,\lambda)$$

Bilevel optimization case

$$F(\theta,\lambda) = \frac{1}{m} \sum_{i=1}^m F_j(\theta,\lambda), \quad G(\theta,\lambda) = \frac{1}{n} \sum_{i=1}^n G_i(\theta,\lambda)$$

$$abla h(\lambda) =
abla_2 F(heta^*(\lambda), \lambda) -
abla_{21}^2 G(heta^*(\lambda), \lambda) \left[
abla_{11}^2 G(heta^*(\lambda), \lambda) \right]^{-1}
abla_1 F(heta^*(\lambda), \lambda)$$

Bilevel optimization case

$$F(\theta,\lambda) = \frac{1}{m} \sum_{i=1}^{m} F_j(\theta,\lambda), \quad G(\theta,\lambda) = \frac{1}{n} \sum_{i=1}^{n} G_i(\theta,\lambda)$$

$$\nabla h(\lambda) = \nabla_2 F(\theta^*(\lambda), \lambda) - \nabla_{21}^2 G(\theta^*(\lambda), \lambda) \left[\nabla_{11}^2 G(\theta^*(\lambda), \lambda) \right]^{-1} \nabla_1 F(\theta^*(\lambda), \lambda)$$

Problem:

$$\left[\sum_{i=1}^n \nabla_{11}^2 G_i(\theta^*(\lambda), \lambda)\right]^{-1} \neq \sum_{i=1}^n \left[\nabla_{11}^2 G_i(\theta^*(\lambda), \lambda)\right]^{-1}$$

Summary

Can we progress in the problem without

• computing exactly $\theta^*(\lambda)$ at each iteration?

Summary

Can we progress in the problem without

- computing exactly $\theta^*(\lambda)$ at each iteration?
- solving exactly $\left[\nabla_{11}^2 G(\theta^*(\lambda), \lambda)\right]^{-1} \nabla_1 F(\theta^*(\lambda), \lambda)$ at each iteration?

Summary

Can we progress in the problem without

- computing exactly $\theta^*(\lambda)$ at each iteration?
- solving exactly $\left[\nabla_{11}^2 G(\theta^*(\lambda), \lambda)\right]^{-1} \nabla_1 F(\theta^*(\lambda), \lambda)$ at each iteration?
- using all the samples at each iteration?

Related work

- 1 Motivating example
- 2 Problem statement
- 3 Related work
- 4 A new framework for stochastic bilevel optimization
- 5 Numerical experiments
- 6 Conclusion

General algorithm

for $t = 1, \ldots, T$ do

- 1 Take for θ^t an approximation of $\theta^*(\lambda^t)$
- **2** Take for v^t an approximation of $\left[\nabla_{11}^2 G(\theta^t, \lambda^t)\right]^{-1} \nabla_1 F(\theta^t, \lambda^t)$
- 3 Set

$$p^{t} = \underbrace{\nabla_{2}F(\theta^{t}, \lambda^{t}) - \nabla_{12}^{2}G(\theta^{t}, \lambda^{t})v^{t}}_{\approx \nabla h(\lambda^{t})}$$

4 Update the outer variable

$$\lambda^{t+1} = \lambda^t - \gamma^t p^t$$

Two loops algorithms

Two loops [Ghadimi et al. 2018]: $\theta^*(\lambda^t)$ is approximated by output of K steps of SGD:

$$\theta^{t,k+1} = \theta^{t,k} - \rho^t \nabla_1 G_i(\theta^{t,k}, \lambda^t)$$

Warm start strategy [Ji et al. 2021, Arbel and Mairal 2022]: Initialize the inner SGD by the previous iterate θ^{t-1} .

Approximate
$$v^t = \left[\nabla_{11}^2 G(\theta^t, \lambda^t)\right]^{-1} \nabla_1 F(\theta^t, \lambda^t)$$
 with:

$$\left[\nabla_{11}^2 G(\theta^t, \lambda^t)\right]^{-1} = \eta \sum_{q=0}^{+\infty} \left(I - \eta \nabla_{11}^2 G(\theta^t, \lambda^t)\right)^q$$

Approximate
$$v^t = \left[\nabla_{11}^2 G(\theta^t, \lambda^t)\right]^{-1} \nabla_1 F(\theta^t, \lambda^t)$$
 with:

$$\left[\nabla_{11}^2 G(\theta^t, \lambda^t)\right]^{-1} \approx \eta \sum_{q=0}^{Q} \left(I - \eta \nabla_{11}^2 G(\theta^t, \lambda^t)\right)^q$$

Approximate
$$v^t = \left[\nabla_{11}^2 G(\theta^t, \lambda^t)\right]^{-1} \nabla_1 F(\theta^t, \lambda^t)$$
 with:

$$\left[\nabla_{11}^2 G(\theta^t, \lambda^t)\right]^{-1} \approx \eta \sum_{q=0}^Q \prod_{k=0}^q \left(I - \eta \nabla_{11}^2 G_{i_k}(\theta^t, \lambda^t)\right)^{\not q}$$

Approximate
$$v^t = \left[\nabla_{11}^2 G(\theta^t, \lambda^t)\right]^{-1} \nabla_1 F(\theta^t, \lambda^t)$$
 with:

$$v^t pprox \eta \sum_{q=0}^{Q} \prod_{k=0}^{q} \left(I - \eta \nabla_{11}^2 G_{i_k}(\theta^t, \lambda^t)\right) \nabla_1 F_j(\theta^t, \lambda^t)$$

Approximate $v^t = \left[\nabla_{11}^2 G(\theta^t, \lambda^t)\right]^{-1} \nabla_1 F(\theta^t, \lambda^t)$ with:

■ Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

$$v^t pprox \eta \sum_{q=0}^{Q} \prod_{k=0}^{q} \left(I - \eta \nabla_{11}^2 G_{i_k}(\theta^t, \lambda^t)\right) \nabla_1 F_j(\theta^t, \lambda^t)$$

■ Stochastic Gradient Descent [Grazzi et al. 2021] since

$$v^t \in rg \min_{v \in \mathbb{R}^p} rac{1}{2} \langle
abla^2_{11} G(heta^t, \lambda^t) v, v
angle + \langle
abla_1 F(heta^t, \lambda^t), v
angle$$

One loop algorithms

Alternate steps in θ and λ [Hong et al. 2020, Yang et al. 2021]:

$$\theta^{t+1} = \theta^t - \rho^t \nabla_1 G_i(\theta^t, \lambda^t) \quad \text{SGD step}$$

$$v^{t+1} = \eta \sum_{q=1}^Q \prod_{k=0}^q \left(I - \eta \nabla_{11}^2 G_{i_k}(\theta^{t+1}, \lambda^t) \right) \nabla_1 F_j(\theta^{t+1}, \lambda^t) \quad \text{Neumann approximation}$$

$$\lambda^{t+1} = \lambda^t - \gamma^t \left(\underbrace{\nabla_2 F_j(\theta^{t+1}, \lambda^t) - \nabla_{21}^2 G_i(\theta^{t+1}, \lambda^t) v^{t+1}}_{\approx \nabla h(\lambda^t)} \right)$$

A new framework for stochastic bilevel optimization

- 1 Motivating example
- 2 Problem statement
- 3 Related work
- 4 A new framework for stochastic bilevel optimization
- 5 Numerical experiments
- 6 Conclusion

Main idea

Three variables to maintain:

- lacksquare heta o inner optimization problem
- $\mathbf{v} \rightarrow \mathsf{linear} \; \mathsf{system}$
- lacksquare λo outer optimization problem

Idea: evolve in θ , ν and λ at the same time following well chosen directions.

$$D_{\theta}(\theta, \mathbf{v}, \lambda) = \nabla_{\mathbf{1}} G(\theta, \lambda)$$
 gradient step toward $\theta^*(\lambda)$

$$\begin{split} D_{\theta}(\theta, v, \lambda) &= \nabla_{1} G(\theta, \lambda) \quad \text{gradient step toward } \theta^{*}(\lambda) \\ D_{v}(\theta, v, \lambda) &= \nabla_{11}^{2} G(\theta, \lambda) v + \nabla_{1} F(\theta, \lambda) \\ \text{gradient step toward } - \left[\nabla_{11}^{2} G(\theta, \lambda) \right]^{-1} \nabla_{1} F(\theta, \lambda) \end{split}$$

$$\begin{split} D_{\theta}(\theta, v, \lambda) &= \nabla_{1}G(\theta, \lambda) \quad \text{gradient step toward } \theta^{*}(\lambda) \\ D_{v}(\theta, v, \lambda) &= \nabla_{11}^{2}G(\theta, \lambda)v + \nabla_{1}F(\theta, \lambda) \\ \quad \text{gradient step toward } - \left[\nabla_{11}^{2}G(\theta, \lambda)\right]^{-1}\nabla_{1}F(\theta, \lambda) \\ D_{\lambda}(\theta, v, \lambda) &= \nabla_{21}^{2}G(\theta, \lambda)v + \nabla_{2}F(\theta, \lambda) \\ \quad \text{gradient step toward } \lambda^{*} \end{split}$$

$$D_{\theta}(\theta, v, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{1} G_{i}(\theta, \lambda)$$

$$D_{v}(\theta, v, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{11}^{2} G_{i}(\theta, \lambda) v + \frac{1}{m} \sum_{j=1}^{m} \nabla_{1} F_{j}(\theta, \lambda)$$

$$D_{\lambda}(\theta, v, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{21}^{2} G_{i}(\theta, \lambda) v + \frac{1}{m} \sum_{i=1}^{m} \nabla_{2} F_{j}(\theta, \lambda)$$

Proposed framework

for
$$t = 1, \ldots, T$$
 do

1 Update θ

$$\theta^{t+1} = \theta^t - \rho^t D_\theta^t$$

2 Update v

$$v^{t+1} = v^t - \rho^t D_v^t$$

3 Update λ

$$\lambda^{t+1} = \lambda^t - \gamma^t D_\lambda^t$$

with D_{θ}^{t} , D_{v}^{t} , D_{λ}^{t} stochastic estimators of $D_{\theta}(\theta^{t}, v^{t}, \lambda^{t})$, $D_{v}(\theta^{t}, v^{t}, \lambda^{t})$ and $D_{\lambda}(\theta^{t}, v^{t}, \lambda^{t})$.

SOBA (StOchastic Bilevel Algorithm) directions

Pick $i \in \{1, ..., n\}$ and $j \in \{1, ..., m\}$ and take

$$D_{\theta}^{t} = \nabla_{1}G_{i}(\theta^{t}, \lambda^{t})$$

$$D_{v}^{t} = \nabla_{11}^{2}G_{i}(\theta^{t}, \lambda^{t})v^{t} + \nabla_{1}F_{j}(\theta^{t}, \lambda^{t})$$

$$D_{\lambda}^{t} = \nabla_{21}^{2}G_{i}(\theta^{t}, \lambda^{t})v^{t} + \nabla_{2}F_{j}(\theta^{t}, \lambda^{t})$$

SOBA (StOchastic Bilevel Algorithm) directions

$$\mathbb{E}_{i,j}[D_{\theta}^{t}] = \frac{1}{n} \sum_{i=1}^{n} \nabla_{1} G_{i}(\theta^{t}, \lambda^{t}) = D_{\theta}(\theta^{t}, v^{t}, \lambda^{t})$$

$$\mathbb{E}_{i,j}[D_{v}^{t}] = \frac{1}{n} \sum_{i=1}^{n} \nabla_{11}^{2} G_{i}(\theta^{t}, \lambda^{t}) v^{t} + \frac{1}{m} \sum_{j=1}^{m} \nabla_{1} F_{j}(\theta^{t}, \lambda^{t}) = D_{v}(\theta^{t}, v^{t}, \lambda^{t})$$

$$\mathbb{E}_{i,j}[D_{\lambda}^{t}] = \frac{1}{n} \sum_{i=1}^{n} \nabla_{21}^{2} G_{i}(\theta^{t}, \lambda^{t}) v^{t} + \frac{1}{m} \sum_{i=1}^{m} \nabla_{2} F_{j}(\theta^{t}, \lambda^{t}) = D_{\lambda}(\theta^{t}, v^{t}, \lambda^{t})$$

Theoretical guarantees of SOBA

Theorem (Convergence of SOBA)

Under some regularity assumptions on F and G, then for decreasing step sizes that verify $\rho^t = \alpha t^{-\frac{1}{2}}$ and $\gamma^t = \beta t^{-\frac{1}{2}}$ for some $\alpha, \beta > 0$, the iterates $(\lambda^t)_{1 \leq t \leq T}$ of SOBA verify

$$\inf_{t \leq T} \mathbb{E}[\|\nabla h(\lambda^t)\|^2] = \mathcal{O}(\log(T)T^{-\frac{1}{2}}) \ .$$

Same convergence rate as SGD for non-convex single level problems!¹

¹Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic programming, *SIAM Journal on Optimization*, 2013

A new framework for stochastic bilevel optimization

Toward variance reduction methods

Toward variance reduction methods

Aside: SAGA for single level problems [Defazio et al. 2014]

Single level problem:

$$\min_{\theta \in \mathbb{R}^p} f(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Aside: SAGA for single level problems [Defazio et al. 2014]

Single level problem:

$$\min_{\theta \in \mathbb{R}^p} f(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Initialisation: Compute and store $m[i] = \nabla f_i(\theta^0)$ for any $i \in \{1, ..., n\}$ and $S[m] = \frac{1}{n} \sum_{i=1}^{n} m[i]$.

Aside: SAGA for single level problems [Defazio et al. 2014]

Single level problem:

$$\min_{\theta \in \mathbb{R}^p} f(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Initialisation: Compute and store $m[i] = \nabla f_i(\theta^0)$ for any $i \in \{1, ..., n\}$ and $S[m] = \frac{1}{n} \sum_{i=1}^{n} m[i]$.

At iteration t:

- **1** Pick $i \in \{1, ..., n\}$
- **2** Update θ

$$\theta^{t+1} = \theta^t - \rho(\nabla f_i(\theta^t) \underbrace{-m[i] + S[m]}_{\text{variance reduction}})$$

3 Update the memory

$$m[i] \leftarrow \nabla f_i(\theta^t)$$

Aside: SAGA for single level problems

Aside: SAGA for single level problems

Bilevel case: SABA (Stochastic Average Bilevel Algorithm)

To estimate

$$D_{\theta}(\theta^{t}, v^{t}, \lambda^{t}) = \nabla_{1}G(\theta^{t}, \lambda^{t})$$

$$D_{v}(\theta^{t}, v^{t}, \lambda^{t}) = \nabla_{11}^{2}G(\theta^{t}, \lambda^{t})v^{t} + \nabla_{1}F(\theta^{t}, \lambda^{t})$$

$$D_{\lambda}(\theta^{t}, v^{t}, \lambda^{t}) = \nabla_{21}^{2}G(\theta^{t}, \lambda^{t})v^{t} + \nabla_{2}F(\theta^{t}, \lambda^{t})$$

we have 5 quantities to estimate on the principle of SAGA:

$$\nabla_1 G(\theta^t, \lambda^t), \quad \nabla_1 F(\theta^t, \lambda^t), \quad \nabla_2 F(\theta^t, \lambda^t)$$
$$\nabla_{12}^2 G(\theta^t, \lambda^t) v^t, \quad \nabla_{11}^2 G(\theta^t, \lambda^t) v^t$$

 $D^t_{ heta}, \, D^t_{ au}$ and D^t_{λ} given using these estimates = **SABA directions**

Theoretical guarantees

Theorem (Convergence of SABA)

Under some regularity assumptions on F and G, with constant and small enough step sizes, the iterates $(\lambda^t)_{1 \le t \le T}$ of SABA verify

$$\frac{1}{T} \sum_{i=1}^{T} \mathbb{E}[\|\nabla h(\lambda^{t})\|^{2}] = \mathcal{O}((n+m)^{\frac{2}{3}} T^{-1}) .$$

Same convergence rate as SAGA for non-convex single level problems!²

²S. J. Reddi, S. Sra, B. Póczos and A. Smola, Fast incremental method for smooth nonconvex optimization, In *2016 IEEE 55th Conference on Decision and Control (CDC)*, 2016

Remarks

- We match the convergence rate of gradient descent
- SABA converges with fixed step sizes
- Faster than SOBA

Complexity

Number of calls to oracle to get an ϵ -stationary solution.

					SUSTAIN		
$\mathcal{O}(\epsilon^{-3})$	$\mathcal{O}(\epsilon^{-2})$	$ ilde{\mathcal{O}}(\epsilon^{-2})$	$ ilde{\mathcal{O}}(\epsilon^{-5/2})$	$ ilde{\mathcal{O}}(\epsilon^{-3/2})$	$\mathcal{O}(\epsilon^{-3/2})$	$\mathcal{O}(\epsilon^{-2})$	$\mathcal{O}(\epsilon^{-1})$

SABA achieves SOTA complexity

Numerical experiments

- 1 Motivating example
- 2 Problem statement
- 3 Related work
- 4 A new framework for stochastic bilevel optimization
- 5 Numerical experiments
- 6 Conclusion

Hyperparameter selection on ℓ^2 regularized logistic regression

Setting:

- Task: binary classification
- IJCNN1 dataset: 49 990 training samples, 91 701 validation samples, 22 features
- Training loss:

$$G(heta,\lambda) = rac{1}{n} \sum_{i=1}^n \log(1 + \exp(-y_i \langle x_i, heta
angle) + rac{1}{2} \sum_{k=1}^p \mathrm{e}^{\lambda_k} heta_k^2$$

■ Validation loss: logistic loss

$$F(heta,\lambda) = rac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i^{\mathrm{val}} \langle x_i^{\mathrm{val}}, heta
angle)$$

Hyperparameter selection on ℓ^2 regularized logistic regression

Data hyper-cleaning

Setting:

- Training samples with corrupted labels
- Dataset: MNIST
- Idea: Give more weight to uncorrupted data:

$$G(\theta, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \sigma(\lambda_i) \ell(\theta x_i, y_i) + C_r \|\theta\|^2$$

with
$$\sigma(\lambda_i) \in [0,1]$$
.

Data hyper-cleaning

Setting:

- We have a validation set with correct labels
- We can use bilevel optimization to tune λ :

$$\begin{cases} \min_{\lambda \in \mathbb{R}^n} F(\theta^*(\lambda), \lambda) = \frac{1}{m} \sum_{j=1}^m \ell(\theta^*(\lambda) x_j^{\text{val}}, y_j^{\text{val}}) \\ \theta^*(\lambda) \in \arg\min_{\theta \in \mathbb{R}^p} G(\theta, \lambda) = \frac{1}{n} \sum_{i=1}^n \sigma(\lambda_i) \ell(\theta x_i, y_i) + C_r \|\theta\|^2 \end{cases}$$

Data hyper-cleaning

Conclusion

- 1 Motivating example
- 2 Problem statement
- 3 Related work
- 4 A new framework for stochastic bilevel optimization
- 5 Numerical experiments
- 6 Conclusion

Take home message

- It is possible to adapt any kind of single level stochastic optimizer to our framework.
- As in single level optimization, variance reduction allows to get convergence rate that matches rates of full batch gradient descent.

https://arxiv.org/abs/2201.13409