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‘— Motivating example
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‘— Motivating example

Classification problem

Setup:
m Data (xj)1<i<n in RP, target binary (y;)i<i<n in {—1,1}
m Goal: find a parameter §* € RP to predict the class y by sign((x, 6*))
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‘— Motivating example

Logistic regression

Logistic loss:

G(9) = izn: log(1 + exp(—yi(x;,0)))
i—1

Training:

0" € arg min G(0)
fgeRp
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‘— Motivating example

Avoiding overfitting

Regularized logistic loss:

A
G(G /\ Z|0g 1+eXp( yI<XH >))+§H9H%
i=1
Training:

0*(\) € argmin G(0, \)
OcRP

Source: https://fr.wikipedia.org/wiki/Surapprentissage
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‘— Motivating example

Avoiding overfitting

Regularized logistic loss:

A
G(G /\ Z|0g 1+eXp( yI<XH >))+§H9H%
i=1
Training:

0*(\) € argmin G(0, \)
OcRP

Source: https://fr.wikipedia.org/wiki/Surapprentissage

How to choose \?


https://fr.wikipedia.org/wiki/Surapprentissage
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Define a grid {A1,..., Ak}
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‘— Motivating example

Grid search

Define a grid {A1,..., Ak}

Train the model for each Ak to get the parameters 6*(\1),...,0%(Ak)

Evaluate the performances on validation samples (x}®, y¥!); <<, not used in the

training phase by computing

F(6*(\q)) mng 1+ exp(—y " (x*2 0% (\e)))) .
i=1
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‘— Motivating example

Grid search

Define a grid {A1,..., Ak}
Train the model for each Ak to get the parameters 6*(\1),...,0%(Ak)

Evaluate the performances on validation samples (x}®, y¥!); <<, not used in the
training phase by computing

F(6*(\q)) mng 1+ exp(—y " (x*2 0% (\e)))) .
i=1

Keep the value of A that gives the lowest value of F(6*())).
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‘— Motivating example

Grid search as a bilevel optimization problem

Grid search = "Find A such that F(6*(\)) is the lowest possible."
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‘— Motivating example

Grid search as a bilevel optimization problem

Grid search = "Find A such that F(6*(\)) is the lowest possible."

Mathematical formalization: Bilevel optimization problem

{min,\ h(\) £ F(6*(N)
0*(X\) € arg mingere G(0, \)
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‘— Motivating example

Grid search with multiple hyperparameters

Regularized logistic loss:

A
G(6,)) Zlog(1+eXP( yI<X179>))+§”9H%
i=1



Stochastic and global variance-reduction bilevel optimization algorithms

‘— Motivating example

Grid search with multiple hyperparameters

Regularized logistic loss:

G(0, ) Zlog 1+ exp(—yi(x;,0))) + = Z)\kﬁz
i=1

The number of trials increases exponentially with the dimension of .
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‘— Motivating example

Grid search with multiple hyperparameters

Regularized logistic loss:

log(1 b2
G(0,\) = n;og + exp(—yi(x;,0))) + = Z K

The number of trials increases exponentially with the dimension of .

Can we use first-order information in order to minimize h(\) = F(0*()\))?
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‘—Problem statement

Bilevel optimization in general

Bilevel optimization problem

minycge h(A) = F(8*(A),A) Outer problem
6*(A) € arg mingere G(0, )  Inner problem
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‘—Problem statement

Neural Architecture Search

Darts [Liu et al. 2019]:
Differentiable Architecture Search

Goal: Find the best architecture of a [] m‘

Neural Network for a given task Ij. 7 o4

Idea: Parametrize the probability of 7 \

the architectures by \ o \ ’

Bilevel formulation: ‘l%l‘ 4‘ “

min)\eRd Eva](e*()\), A) Source: [Liu et al. 2019]
0*(X\) € arg mingerp Lirain (6, A)
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‘—Problem statement

Deep Equilibrium Networks [Bai et al. 2019]

Idea: Replace the forward pass by a root finding problem g(z,6) =0
Training a DEQ: Boils down to solve

mein L(z*(0)), g(z"(6),0)=0

= Memory storage needed at training time

alt = 7 at which
Depth as L — o0 Jolxio) =x
o
z[ll‘q]ﬂ 217
Forvard || mde l
xL 1
ol v i A {Equilibrium Solver for
2 = fo (2 x) 2 = fo(z";x)
ty N N
4 l!i‘ﬂn‘ml T lBA(k\\«ml
History (or zero) padding = ;
(i.e., previous equilibrium) >} z[ ]
LT
Input injection
Positional embedding ~ —»1,

Fixed

Typical Deep Neural Network

Time
Deep Equilibrium Model
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‘—Problem statement

Gradient descent

Gradient descent on h:
At+1 — )\t _ ,Ych(At)

—+— Iterates of GD

-10 T ™ ™ ™ ™ ™
-10 -8 -6 -4 -2 0 2
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‘—Problem statement

Gradient of h?

Definition of h:

h(Y) = F(E°(1), ), °(A) € argmin G(6, 3)
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‘—Problem statement

Gradient of h?

Definition of h:

h(Y) = F(E°(1), ), °(A) € argmin G(6, 3)

Chain rule:
Vh(A) = VaF(6%(A),\) + (d9*()\))TV1F(9*(/\), A)
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‘—Problem statement

Implicit differentiation

Optimality condition for 6*(\):

V1G(0*(\),\) =0
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‘—Problem statement

Implicit differentiation

Optimality condition for 6*(\):

V1G(0*(\),\) =0

Implicit function theorem:

40" () = — [V36(0° (A, N)] T VR6(0° (1), A)
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‘—Problem statement

Implicit gradient in practice

Gradient of h:

Vh(A) = V2F(6°(\). 3) — V3, 6(0°(1). A) [VH G(0°(\). N)]  VaF(0*(3). A)
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‘—Problem statement

Implicit gradient in practice

Gradient of h:

Vh(A) = V2F (07 (0. 3) = V3, 6(0°(1). A) [V36(0° (1), N)]  VaF(0° (1), A)

m Need to solve the inner optimization problem
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‘—Problem statement

Implicit gradient in practice

Gradient of h:

Vh(A) = V2F(0°(A). A) — V3, G(0°(1). ) [V3,G(0°(0). )] VaF(0°(1). )

m Need to solve the inner optimization problem

m Need to solve a linear system of size p x p
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‘—Problem statement

Empirical Risk minimization

Classical ML setting;:

Ms

G(0,\) = - > Gi(6,))

3\'—‘
.
I
a
1
i
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‘—Problem statement

Empirical Risk minimization

Classical ML setting;:

Zm: G(0,\) = - > Gi(6,))

1
m. i=1

Consequence: For large m and n, any single derivative is cumbersome to compute.
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‘—Problem statement

Aside: Stochastic optimization for single level problems

Single level problem:

mlnf Zf
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‘—Problem statement

Aside: Stochastic optimization for single level problems

Single level problem:

mlnf Zf 0)

First-order stochastic optimization:

0t = 0" — p'g’, Elg0] = VF(6")
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‘—Problem statement

Aside: Stochastic optimization for single level problems

Single level problem:

mlnf Zf

First-order stochastic optimization:

0t = 0" — p'g’, Elg0] = VF(6")

Example: stochastic gradient descent [Robbins and Monro 1951]:

pt+l :9t—ptv1'—,‘(9t), i~U{1L,...,n})
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‘—Problem statement

Bilevel optimization case

F(H,A):%

Em: Fi(0,2), G(6,)) = % Z Gi(6,))
i=1

Jj=1
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‘—Problem statement

Bilevel optimization case

m

% > Fi( G(0,)\) = % Z Gi(0,)\)
i=1

Jj=1

Vh(A) = V2F(6°(\). A) — V3, 6(0°(1). A) [VHG(0°(A). 0)]  VaF(0*(3). \)
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Bilevel optimization case
> Fi(0,)), G(8,)) ZGH/\

1
m =

F(0,\) =
Vh(A) = V2F(0°(A). A) — V3, G(0°(1). ) [T3,G(0°(1). )] VaF(0*(3). )

Problem:

n -1 _
Zvilci(e*u),x)] A3 [hGe (). 0]
i=1

i=1
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‘—Problem statement

Summary

Can we progress in the problem without

m computing exactly 8*(\) at each iteration?
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Summary

Can we progress in the problem without

m computing exactly 8*(\) at each iteration?

m solving exactly [V G(O*()\),)\)]_l V1F(6*(\), \) at each iteration?
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‘—Problem statement

Summary

Can we progress in the problem without

m computing exactly 8*(\) at each iteration?
m solving exactly [V G(O*()\),)\)]_l V1F(6*(\), \) at each iteration?

m using all the samples at each iteration?
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‘—Related work

Related work

Related work
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‘—Related work

General algorithm

fort=1,...,T do
Take for §* an approximation of 6*(\?)

Take for vt an approximation of [V3,G(6", )\t)]fl V1F(0%,\F)

Set
pt = VaF (0%, \Y) — V2,G(0%, \')v!

~Vh(AL)

Update the outer variable
)\H—l _ )\t _ ,ytpt
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‘—Related work

Two loops algorithms

Two loops [Ghadimi et al. 2018]:  6*(\') is approximated by output of K steps of
SGD:
0t,k+1 — et,k _ ptvl G;(@t’k, )\t)

Warm start strategy [Ji et al. 2021, Arbel and Mairal 2022]: Initialize the inner
SGD by the previous iterate #171.
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What about the linear system?
Approximate vt = [V, G(0", )\t)}_l V1F (6%, \) with:

m Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

Vh60° 2] =3 (11960 19)"
q=0
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What about the linear system?
Approximate vt = [V3,G(6", )\t)}_l ViF (6%, A\') with:

m Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

(V3.6(0°,0)] Tay f: (1= nvh6(0°, 1Y)
q=0

q
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_ reatedvork
What about the linear system?
Approximate vt = [V3,G(6", )\t)}_l ViF (6%, A\') with:

m Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

{Vilc(et»At)}_l ~ 772 ﬁ ( lel i ( (6%, ))ﬁ

q=0 k=0
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What about the linear system?
Approximate vt = [V3,G(6", )\t)}_l ViF (6%, A\') with:

m Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:

Q q
<03 T (1 1vh600) 7150 )

q=0 k=0
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What about the linear system?
Approximate vt = [V3,G(6", )\t)}_l ViF (6%, A\') with:

m Neumann approximations [Ghadimi et al. 2018, Ji et al. 2021]:
Q q
~n3 H (1= V3G, (0%, A1) V1 Fi (0%, M)
q: :

m Stochastic Gradient Descent [Grazzi et al. 2021] since

vt € argmin %(V%l G(O%, XY v, v) + (V1F (0%, \F),v)
veRP
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‘—Related work

One loop algorithms

Alternate steps in 6 and A [Hong et al. 2020, Yang et al. 2021]:

Ot = 0f — p'V1G;(AF,\F)  SGD step
Q g
vt =03 11 (l —nV23,G, (67, )\t)) V1F; (6", A")  Neumann approximation
g=1 k=0
AT = A (VR (0 0) — V3 G0 A

~Vh(AL)
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‘—A new framework for stochastic bilevel optimization

Main idea

Three variables to maintain:
m 0 — inner optimization problem
m v — linear system

B )\ — outer optimization problem

Idea: evolve in 6, v and X at the same time following well chosen directions.
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‘—A new framework for stochastic bilevel optimization

Motivation of the framework

Directions:

Dy(0,v,\) = V1G(0,)\) gradient step toward 07(\)
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‘—A new framework for stochastic bilevel optimization

Motivation of the framework

Directions:

Dy(0,v,\) = V1G(0,)\) gradient step toward 07(\)
Dy(0,v,\) = V31 G(0, \)v + V1F(0,))

1
gradient step toward — {V%l G(0, /\)} ViF(6,)\)
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‘—A new framework for stochastic bilevel optimization

Motivation of the framework

Directions:

Dy(0,v,\) = V1G(0,)\) gradient step toward 07(\)
Dy(0,v,\) = V31 G(0, \)v + V1F(0,))

1
gradient step toward — {V%l G(0, /\)} ViF(6,)\)
DA(6, v, A) = V3,G(6, \)v + V2F(6, )

gradient step toward \*
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‘—A new framework for stochastic bilevel optimization

Motivation of the framework

Directions:

Dy(0,v,\) = Zlee/\)

Dy(6,v, ) Zv (0, \)v + = ZvlF(G)\)

_/ 1

Dx(6, v, \) Zv21 0, \)v + = ZVzF(HA)

_/ 1
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‘—A new framework for stochastic bilevel optimization

Proposed framework

fort=1,..., T do

Update 0

0t+1 — 9t — pth
Update v

vt — ot PtD\i
Update A

)\t—l-]. _ )\t . ,yth\

with Df, D, D} stochastic estimators of Dg(6%, vi, \*), D, (6%, vi, \*) and
Dy (6%, vt A1).
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‘—A new framework for stochastic bilevel optimization

SOBA (StOchastic Bilevel Algorithm) directions

Pick i€ {1,...,n} and j € {1,..., m} and take

D} = V1Gi(6%,\Y)
DY = V3, G0, \')v! + V1 F;(0%, A1)
Df = V3, Gi(0", \')v' + V2 F;(60%, \Y)
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‘—A new framework for stochastic bilevel optimization

SOBA (StOchastic Bilevel Algorithm) directions

1 n
E;;[Ds] = - ZV1Gi(9t,)\t) = Dy(6%, vE, \Y)
E;j[D)] ZV (05 A+ — ZvlF (0, Af) = D, (6%, v!, AY)
_/ 1

Ei;[Di] = ;nglG,-(Gt, vi4+ — ZVzF (65, \F) = Dy (6%, vi, A\Y)

_/ 1
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‘—A new framework for stochastic bilevel optimization

Theoretical guarantees of SOBA

Theorem (Convergence of SOBA)

Under some regularity assumptions on F and G, then for decreasing step sizes that
verify pt = at™2 and vt = ﬁt_% for some a, 8 > 0, the iterates (\')1<:<7 of SOBA
verify o

inf E[|VA(A)[’] = O(log(T) T72) .

Same convergence rate as SGD for non-convex single level problems!?

!Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming, SIAM Journal on Optimization, 2013
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‘—A new framework for stochastic bilevel optimization

Toward variance reduction methods

7

SGD, large step

N

\
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‘—A new framework for stochastic bilevel optimization

Toward variance reduction methods

101 .
—— Gradient descent
L — SGD
107+ A
el
\ 10—3 i
Y
10—5 i

Epochs
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‘—A new framework for stochastic bilevel optimization

Aside: SAGA for single level problems [Defazio et al. 2014]

Single level problem:

gg]erLf Zf
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‘—A new framework for stochastic bilevel optimization

Aside: SAGA for single level problems [Defazio et al. 2014]

Single level problem:

min f(#) = %Z f(0)
i=1

OcRP

Initialisation: Compute and store m[i] = V£(6°) for any i € {1,...,n} and
S[m] = % iy mli].
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‘—A new framework for stochastic bilevel optimization

Aside: SAGA for single level problems [Defazio et al. 2014]

Single level problem:

1 n
min £(6) = ;;ff(@)
Initialisation: Compute and store m[i] = V£(6°) for any i € {1,...,n} and
Sim) = 250, mi].
At iteration t:
Pick i € {1,...,n}
Update 0
6+ — 6 — p(VA(6%) —m[i] + S[m])
variance reduction

Update the memory
m[i] < V£;(0")
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‘—A new framework for stochastic bilevel optimization

Aside: SAGA for single level problems

Stochastic Average Gradient

[ P S e \
2 — Gradients at x

- g

25 Gradients memory

7~

-’

— Memory average

N
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‘—A new framework for stochastic bilevel optimization

Aside: SAGA for single level problems

a \

10—4 .

f -

10—7 .
—— Gradient descent

10—10_ — SGD
SAGA

0 5 10 15 20
Epochs
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‘—A new framework for stochastic bilevel optimization

Bilevel case: SABA (Stochastic Average Bilevel Algorithm)

To estimate
Dy(0F, v, \Y) = V1G(6%, \F)
D, (6%, vE, \Y) = V3, G(6F, \F)vE + V1 F (0%, \Y)
Dy(0%, vE, AT) = V3, G(0%, \')vE + Vo F (6%, \F)
we have 5 quantities to estimate on the principle of SAGA:

ViG(0E,\Y), ViF(6%,\), VaoF(6%,)\Y)
V23,G(0F, M)vE V3 G0, X!

D}, DY and Dj given using these estimates = SABA directions
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‘—A new framework for stochastic bilevel optimization

Theoretical guarantees

Theorem (Convergence of SABA)

Under some regularity assumptions on F and G, with constant and small enough step
sizes, the iterates (A\')1<t<T of SABA verify

fZE[IIVh )2 = O((n+m)5T1) .

Same convergence rate as SAGA for non-convex single level problems!?

2S. J. Reddi, S. Sra, B. Péczos and A. Smola, Fast incremental method for smooth nonconvex
optimization, In 2016 IEEE 55th Conference on Decision and Control (CDC), 2016
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‘—A new framework for stochastic bilevel optimization

Remarks

m We match the convergence rate of

1072 . L

£
gradient descent 2
e)
m SABA converges with fixed step sizes S 10-12 4 SABA
=== SOBA
T T T T T
m Faster than SOBA 0 100 200 300 400

Iterations
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‘—A new framework for stochastic bilevel optimization

Complexity

Number of calls to oracle to get an e-stationary solution.

BSA | amiGO | stocBiO | TTSA | MRBO | SUSTAIN | SOBA | SABA
O [ 0(c) | O(e?) | O(e®?) [ O(*72) | 0(e*?) | O(e?) | O

SABA achieves SOTA complexity
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‘—Numerical experiments

Numerical experiments

Numerical experiments
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‘—Numerical experiments

Hyperparameter selection on ¢? regularized logistic regression

Setting:
m Task: binary classification
m IJCNN1 dataset: 49990 training samples, 91 701 validation samples, 22 features
m Training loss:

G(h,\) = Zlog (1 + exp(—yi{x;,0)) + = Z e g2
i=1

m Validation loss: logistic loss

1 m
= =Y log(1 + exp(—y ! (x, 0))
m-=
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‘—Numerical experiments

Hyperparameter selection on ¢ regularized logistic regression

*
<

|
3 TR R
.'.? L
‘©

£ r
o \

\ o
T T T T
100 200 300 400
Time [sec]
* MRBO ===+ TTSA == = StocBiO SABA

SUSTAIN == AmIGO BSA == SOBA
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‘—Numerical experiments

Data hyper-cleaning

Setting:

s | S 0 4H /

m Training samples with corrupted labels
m Dataset: MNIST ¥ ! ! +
m Idea: Give more weight to uncorrupted 7 9 4 2

data:

1< 2 3

G(0,2) = = > a(\)l(Oxi, i)+ C |61
nig ! ! ! ]
with o(A;) € [0,1]. 9 2 4 1
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‘—Numerical experiments

Data hyper-cleaning

Setting:
m We have a validation set with correct labels

m We can use bilevel optimization to tune A:

minxers F(05(X), A) = 2 370 L0 (A%, y™)
0%(\) € arg mingege G(6,A) = 7 31y (M) (0x;, yi) + G102
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‘—Numerical experiments

Data hyper-cleaning

40%

30% A

Test error

20%

15%

10— 100 10t 102
Time [sec]

===+ MRBO ===t TTSA == = StocBiO SABA
SUSTAIN == AmIGO BSA === SOBA



Stochastic and global variance-reduction bilevel optimization algorithms

‘— Conclusion

Conclusion

I[@ Conclusion
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‘— Conclusion

Take home message

m It is possible to adapt any kind of single level stochastic optimizer to our
framework.

m As in single level optimization, variance reduction allows to get convergence rate
that matches rates of full batch gradient descent.

https://arxiv.org/abs/2201.13409


https://arxiv.org/abs/2201.13409

	Motivating example
	Problem statement
	Related work
	A new framework for stochastic bilevel optimization
	Numerical experiments
	Conclusion

	anm1: 
	1.119: 
	1.118: 
	1.117: 
	1.116: 
	1.115: 
	1.114: 
	1.113: 
	1.112: 
	1.111: 
	1.110: 
	1.109: 
	1.108: 
	1.107: 
	1.106: 
	1.105: 
	1.104: 
	1.103: 
	1.102: 
	1.101: 
	1.100: 
	1.99: 
	1.98: 
	1.97: 
	1.96: 
	1.95: 
	1.94: 
	1.93: 
	1.92: 
	1.91: 
	1.90: 
	1.89: 
	1.88: 
	1.87: 
	1.86: 
	1.85: 
	1.84: 
	1.83: 
	1.82: 
	1.81: 
	1.80: 
	1.79: 
	1.78: 
	1.77: 
	1.76: 
	1.75: 
	1.74: 
	1.73: 
	1.72: 
	1.71: 
	1.70: 
	1.69: 
	1.68: 
	1.67: 
	1.66: 
	1.65: 
	1.64: 
	1.63: 
	1.62: 
	1.61: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


