Contributions to stochastic bilevel optimization

Mathieu DAGRÉOU

Under the supervision of Pierre Ablin, Thomas Moreau and Samuel Vaiter

Ph.D. Commitee:

Aurélien Bellet	Inria
Peter Ochs	Saar
Émilie Chouzenoux	Inria
Julien Mairal	Inria
Édouard Pauwels	Toul

- a Montpellier
- rland University
- a Saclay
- a Grenoble
- louse School of Economics

universite Paris-saclay

 Mathematical formalism where the problem we want to solve depends on the solution of another problem

- Mathematical formalism where the problem we want to solve depends on the solution of another problem
- Attention in the ML community because of its ability to model many situations

Kristin P. Bennett, Jing Hu, Xiaoyun Ji, Gautam Kunapuli, and Jong-Shi Pang

- Mathematical formalism where the problem we want to solve depends on the solution of another problem
- Attention in the ML community because of its ability to model many situations

Model Selection via Bilevel Optimization

Kristin P. Bennett, Jing Hu, Xiaoyun Ji, Gautam Kunapuli, and Jong-Shi Pang

- Mathematical formalism where the problem we want to solve depends on the solution of another problem
- Attention in the ML community because of its ability to model many situations

Model Selection via Bilevel Optimization

DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH

Hanxiao Liu* CMU hanxiaol@cs.cmu.com

Karen Simonyan DeepMind simonyan@google.com Yiming Yang CMU yiming@cs.cmu.edu

Kristin P. Bennett, Jing Hu, Xiaoyun Ji, Gautam Kunapuli, and Jong-Shi Pang

- Mathematical formalism where the problem we want to solve depends on the solution of another problem
- Attention in the ML community because of its ability to model many situations

Model Selection via Bilevel Optimization

DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH

Hanxiao Liu* CMU hanxiaol@cs.cmu.com Karen Simonyan DeepMind simonyan@google.com Yiming Yang CMU yiming@cs.cmu.edu

Bilevel Optimization to Learn Training Distributions for Language Modeling under Domain Shift

> David Grangier, Pierre Ablin, Awni Hannun Apple, {grangier,pablin,awni}@apple.com

Kristin P. Bennett, Jing Hu, Xiaoyun Ji, Gautam Kunapuli, and Jong-Shi Pang

- Mathematical formalism where the problem we want to solve depends on the solution of another problem
- Attention in the ML community because of its ability to model many situations

Model Selection via Bilevel Optimization

DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH

Hanxiao Liu* CMU hanxiaol@cs.cmu.com Karen Simonyan DeepMind simonyan@google.com Yiming Yang CMU yiming@cs.cmu.edu

Bilevel Optimization to Learn Training Distributions for Language Modeling under Domain Shift

David Grangier, Pierre Ablin, Awni Hannun Apple, {grangier, pablin, awni}@apple.com

DADA: Differentiable Automatic Data Augmentation

Yonggang Li^{*1}, Guosheng Hu^{*2,3}, Yongtao Wang^{†1}, Timothy Hospedales⁴, Neil M. Robertson^{2,3}, and Yongxin Yang⁴

Kristin P. Bennett, Jing Hu, Xiaoyun Ji, Gautam Kunapuli, and Jong-Shi Pang

- Mathematical formalism where the problem we want to solve depends on the solution of another problem
- Attention in the ML community because of its ability to model many situations

Deep Equilibrium Models

Shaojie Bai Carnegie Mellon University J. Zico Kolter Carnegie Mellon University Bosch Center for AI Vladlen Koltun Intel Labs

Model Selection via Bilevel Optimization

DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH

Hanxiao Liu* CMU hanxiaol@cs.cmu.com Karen Simonyan DeepMind simonyan@google.com Yiming Yang CMU yiming@cs.cmu.edu

Bilevel Optimization to Learn Training Distributions for Language Modeling under Domain Shift

David Grangier, Pierre Ablin, Awni Hannun Apple, {grangier, pablin, awni}@apple.com

DADA: Differentiable Automatic Data Augmentation

Yonggang Li^{*1}, Guosheng Hu^{*2,3}, Yongtao Wang^{†1}, Timothy Hospedales⁴, Neil M. Robertson^{2,3}, and Yongxin Yang⁴

Kristin P. Bennett, Jing Hu, Xiaoyun Ji, Gautam Kunapuli, and Jong-Shi Pang

- Mathematical formalism where the problem we want to solve depends on the solution of another problem
- Attention in the ML community • because of its ability to model many situations

Deep Equilibrium Models

Shaojie Bai Carnegie Mellon University

J. Zico Kolter Carnegie Mellon University Bosch Center for AI

Model Selection via Bilevel Optimization

DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH

Hanxiao Liu* CMU hanxiaol@cs.cmu.com

Karen Simonyan DeepMind simonyan@google.com Yiming Yang CMU yiming@cs.cmu.edu

Bilevel Optimization to Learn Training Distributions for Language Modeling under Domain Shift

David Grangier, Pierre Ablin, Awni Hannun Apple, {grangier, pablin, awni}@apple.com

DADA: Differentiable Automatic Data Augmentation

Yonggang Li^{*1}, Guosheng Hu^{*2,3}, Yongtao Wang^{†1}, Timothy Hospedales⁴, Neil M. Robertson^{2,3}, and Yongxin Yang⁴

Meta-Learning with Implicit Gradients

Aravind Rajeswaran^{*,1} Chelsea Finn^{*,2} Sham Kakade¹ Sergey Levine² ¹ University of Washington Seattle ² University of California Berkeley

Vladlen Koltun Intel Labs

Bilevel Optimization Problem

Bilevel Optimization Problem

$$\min_{\lambda \in \mathbb{R}^{d_{\lambda}}} \Phi(\lambda) \triangleq f(\lambda, \theta^{*}(\lambda))$$
$$\theta^{*}(\lambda) = \operatorname*{argmin}_{\theta \in \mathbb{R}^{d_{\theta}}} g(\lambda, \theta)$$

Contour of g

Contour of g

Contour of g

Learning = Solving an optimization problem

• Training samples $\{(x_i^{\text{train}}, y_i^{\text{train}})\}_{i=1}^n$, prediction function $(h_{\theta})_{\theta \in \mathbb{R}^{d_{\theta}}}$.

- Training samples $\{(x_i^{\text{train}}, y_i^{\text{train}})\}_{i=1}^n$, prediction function $(h_{\theta})_{\theta \in \mathbb{R}^{d_{\theta}}}$.
- Empirical Risk Minimization

$$\min_{\theta \in \mathbb{R}^{d_{\theta}}} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i^{\text{train}}, h_{\theta}(x_i^{\text{train}}))$$

Learning = Solving an optimization problem

- Training samples $\{(x_i^{\text{train}}, y_i^{\text{train}})\}_{i=1}^n$, prediction function $(h_{\theta})_{\theta \in \mathbb{R}^{d_{\theta}}}$.
- Empirical Risk Minimization

$$\min_{\theta \in \mathbb{R}^{d_{\theta}}} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i^{\text{train}}, h_{\theta}(x_i^{\text{train}}))$$

• Solution θ^* found by running SGD[Robbins & Monro '54]

iem diction)))

- Training samples $\{(x_i^{\text{train}}, y_i^{\text{train}})\}_{i=1}^n$, prediction function $(h_{\theta})_{\theta \in \mathbb{R}^{d_{\theta}}}$.
- **Empirical Risk Minimization** ullet

$$\min_{\theta \in \mathbb{R}^{d_{\theta}}} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i^{\text{train}}, h_{\theta}(x_i^{\text{train}}))$$

- Solution θ^* found by running SGD[Robbins & Monro '54]
- There are hyperparameters, e.g. regularization $\min_{\theta \in \mathbb{R}^{d_{\theta}}} g(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i^{\text{train}}, h_{\theta}(x_i^{\text{train}})) + \frac{\lambda}{2} \|\theta\|^2$

- Training samples $\{(x_i^{\text{train}}, y_i^{\text{train}})\}_{i=1}^n$, prediction function $(h_{\theta})_{\theta \in \mathbb{R}^{d_{\theta}}}$.
- Empirical Risk Minimization

$$\min_{\theta \in \mathbb{R}^{d_{\theta}}} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i^{\text{train}}, h_{\theta}(x_i^{\text{train}}))$$

- Solution θ^* found by running SGD[Robbins & Monro '54]
- There are hyperparameters, e.g. regularization $\min_{\theta \in \mathbb{R}^{d_{\theta}}} g(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i^{\text{train}}, h_{\theta}(x_i^{\text{train}})) + \frac{\lambda}{2} \|\theta\|^2$
- The learnt parameter $\theta^*(\lambda)$ depends on λ

- Training samples $\{(x_i^{\text{train}}, y_i^{\text{train}})\}_{i=1}^n$, prediction function $(h_{\theta})_{\theta \in \mathbb{R}^{d_{\theta}}}$.
- Empirical Risk Minimization

$$\min_{\theta \in \mathbb{R}^{d_{\theta}}} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i^{\text{train}}, h_{\theta}(x_i^{\text{train}}))$$

- Solution θ^* found by running SGD[Robbins & Monro '54]
- There are hyperparameters, e.g. regularization $\min_{\theta \in \mathbb{R}^{d_{\theta}}} g(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i^{\text{train}}, h_{\theta}(x_i^{\text{train}})) + \frac{\lambda}{2} \|\theta\|^2$
- The learnt parameter $\theta^*(\lambda)$ depends on λ
- λ selected by minimizing the validation loss $f(\theta^*(\lambda)) = \frac{1}{m} \sum_{j=1}^m \ell(y_i^{\text{val}}, h_{\theta^*(\lambda)}(x_i^{\text{val}}))$

Learning = Solving an optimization problem

- Training samples $\{(x_i^{\text{train}}, y_i^{\text{train}})\}_{i=1}^n$, prediction function $(h_{\theta})_{\theta \in \mathbb{R}^{d_{\theta}}}$.
- **Empirical Risk Minimization** ullet

$$\min_{\theta \in \mathbb{R}^{d_{\theta}}} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i^{\text{train}}, h_{\theta}(x_i^{\text{train}}))$$

- Solution θ^* found by running SGD[Robbins & Monro '54]
- There are hyperparameters, e.g. regularization $\min_{\theta \in \mathbb{R}^{d_{\theta}}} g(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i^{\text{train}}, h_{\theta}(x_i^{\text{train}})) + \frac{\lambda}{2} \|\theta\|^2$
- The learnt parameter $\theta^*(\lambda)$ depends on λ
- λ selected by minimizing the validation loss ullet $f(\theta^*(\lambda)) = \frac{1}{m} \sum_{j=1}^{m} \ell(y_i^{\text{val}}, h_{\theta^*(\lambda)}(x_i^{\text{val}}))$

Bilevel problem

$$\min_{\lambda} f(\theta^*(\lambda))$$
$$\theta^*(\lambda) = \operatorname*{argmin}_{\theta \in \mathbb{R}^{d_{\theta}}} g(\lambda, \theta)$$

Solving bilevel problems

Grid search

Grid search

1. Define a grid of candidates $\lambda_1, \ldots, \lambda_K$

Grid search

- 1. Define a grid of candidates $\lambda_1, \ldots, \lambda_K$
- 2. Train the model to get $\theta^*(\lambda_1), \ldots, \theta^*(\lambda_K)$

Grid search

- 1. Define a grid of candidates $\lambda_1, \ldots, \lambda_K$
- 2. Train the model to get $\theta^*(\lambda_1), \ldots, \theta^*(\lambda_K)$
- 3. Select the one that minimizes the value function $\Phi(\lambda) = f(\lambda, \theta^*(\lambda))$

The problem with the grid search

Grid search

- 1. Define a grid of candidates $\lambda_1, \ldots, \lambda_K$
- 2. Train the model to get $\theta^*(\lambda_1), \ldots, \theta^*(\lambda_K)$
- 3. Select the one that minimizes the value function

Curse of dimensionality

The number of function evaluations scales exponentially with the dimension

$|\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^{0}\}^{3}| = 5^{3} = 125$

 $|\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^{0}\}^2| = 5^2 = 25$

 $|\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^{0}\}| = 5$

First-order optimization

Gradient descent on Φ

$$\lambda^{t+1} = \lambda^t - \gamma \nabla \Phi(\lambda^t)$$

First-order optimization

Gradient descent on Φ $\lambda^{t+1} = \lambda^t - \gamma \nabla \Phi(\lambda^t)$

Complexity

First-order optimization

Gradient descent on Φ $\lambda^{t+1} = \lambda^t - \gamma \nabla \Phi(\lambda^t)$

Complexity

✓ Number of gradient computations to reach an ϵ -stationary point if Φ is smooth:

 $\mathcal{O}(\epsilon^{-1})$

First-order optimization

Gradient descent on Φ $\lambda^{t+1} = \lambda^t - \gamma \nabla \Phi(\lambda^t)$

Complexity

✓ Number of gradient computations to reach an ϵ -stationary point if Φ is smooth:

$$\mathcal{O}(\epsilon^{-1})$$

Independent from the input dimension

First-order optimization

Differentiable?

Gradient descent on $\dot{\Phi}$

$$\lambda^{t+1} = \lambda^t - \gamma \nabla \Phi(\lambda^t)$$

Complexity

✓ Number of gradient computations to reach an ϵ -stationary point if Φ is smooth:

Complexity

✓ Number of gradient computations to reach an ϵ -stationary point if Φ is smooth:

Implicit differentiation [Jongen et al. '90, Dempe '93, Larsen '96, Dempe '98]

Bilevel problem

$$\min_{\lambda \in \mathbb{R}^{d_{\lambda}}} \Phi(\lambda) \triangleq f(\lambda, \theta^{*}(\lambda))$$
$$\theta^{*}(\lambda) = \operatorname*{argmin}_{\theta \in \mathbb{R}^{d_{\theta}}} g(\lambda, \theta)$$

Implicit differentiation [Jongen et al. '90, Dempe '93, Larsen '96, Dempe '98]

Bilevel problem

$$\min_{\lambda \in \mathbb{R}^{d_{\lambda}}} \Phi(\lambda) \triangleq f(\lambda, \theta^*(\lambda))$$
$$\theta^*(\lambda) = \operatorname{argmin} g(\lambda, \theta)$$

$$f(\lambda) = \operatorname*{argmin}_{\theta \in \mathbb{R}^{d_{\theta}}} g(\lambda, \theta)$$

Differentiable

Twice differentiable and strongly convex

Differentiable

Differentiable

Twice differentiable and

Differentiable

 $\nabla_{\theta} g(\lambda, \theta^*(\lambda)) = 0$

 $\nabla_{\theta,\theta}^2 g(\lambda,\theta^*(\lambda)) \mathrm{d}\theta^*(\lambda) + \nabla_{\theta,\lambda}^2 g(\lambda,\theta^*(\lambda)) = 0$

Implicit differentiation [Jongen et al. '90, Dempe '93, Larsen '96, Dempe '98] Differentiable

 $\nabla_{\theta,\theta}^2 g(\lambda,\theta^*(\lambda)) \mathrm{d}\theta^*(\lambda) + \nabla_{\theta,\lambda}^2 g(\lambda,\theta^*(\lambda)) = 0$

$\mathrm{d}\theta^*(\lambda) = -\left[\nabla^2_{\theta,\theta}g(\lambda,\theta^*(\lambda))\right]^{-1}\nabla^2_{\theta,\lambda}g(\lambda,\theta^*(\lambda))$

Implicit gradient

 $\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \ \theta^*(\lambda) \) - \nabla_{\lambda,\theta}^2 g(\lambda, \ \theta^*(\lambda) \) \left[\nabla_{\theta,\theta}^2 g(\lambda, \ \theta^*(\lambda) \) \right]^{-1} \nabla_{\theta} f(\lambda, \ \theta^*(\lambda) \)$

Implicit gradient

Bottlenecks

 $\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \ \theta^*(\lambda) \) - \nabla^2_{\lambda,\theta} g(\lambda, \ \theta^*(\lambda) \) \left[\nabla^2_{\theta,\theta} g(\lambda, \ \theta^*(\lambda) \) \right]^{-1} \nabla_{\theta} f(\lambda, \ \theta^*(\lambda) \)$

Implicit gradient

$$\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \theta^*(\lambda)) - \nabla_{\lambda,\theta}^2 g(\lambda, \theta^*(\lambda)) \left[\nabla_{\theta,\theta}^2 g(\lambda, \theta^*(\lambda)) \right]^{-1} \nabla_{\theta} f(\lambda, \theta^*(\lambda))$$

Bottlenecks

• Solution of the inner problem

Implicit gradient

Bottlenecks

- Solution of the inner problem
- Solution of a linear system

Implicit gradient

Bottlenecks

- Solution of the inner problem •
- Solution of a linear system
- Computing a gradient is expensive \bullet

Implicit gradient

 $\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \theta^*(\lambda)) - \nabla^2_{\lambda,\theta} g(\lambda, \theta^*(\lambda)) - \nabla^2_{\lambda,\theta} g(\lambda,$

Bottlenecks

- Solution of the inner problem
- Solution of a linear system
- Computing a gradient is expensive

$$(\theta^*(\lambda)) \left[\nabla^2_{\theta,\theta} g(\lambda, \theta^*(\lambda)) \right]^{-1} \nabla_{\theta} f(\lambda, \theta^*(\lambda))$$

ML setting: Empirical Risk Minimization $f(\lambda, \theta) = \frac{1}{m} \sum_{j=1}^{m} f_j(\lambda, \theta), \quad g(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} g_i(\lambda, \theta)$

Implicit gradient

 $\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \theta^*(\lambda)) - \nabla^2_{\lambda,\theta} g(\lambda, \theta^*(\lambda)) - \nabla^2_{\lambda,\theta} g(\lambda,$

Bottlenecks

- Solution of the inner problem
- Solution of a linear system
- Computing a gradient is expensive

Stochastic optimization[Robbins & Monro '51]

$$\lambda^{t+1} = \lambda^t - \gamma^t d^t$$

Cheap estimator of $\nabla \Phi(\lambda^t)$

$$(\theta^*(\lambda)) \left[\nabla^2_{\theta,\theta} g(\lambda, \theta^*(\lambda)) \right]^{-1} \nabla_{\theta} f(\lambda, \theta^*(\lambda))$$

ML setting: Empirical Risk Minimization $f(\lambda, \theta) = \frac{1}{m} \sum_{j=1}^{m} f_j(\lambda, \theta), \quad g(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} g_i(\lambda, \theta)$

Implicit gradient

 $\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \theta^*(\lambda)) - \nabla^2_{\lambda,\theta} g(\lambda, \theta^*(\lambda)) - \nabla^2_{\lambda,\theta} g(\lambda,$

Bottlenecks

- Solution of the inner problem
- Solution of a linear system
- Computing a gradient is expensive

Stochastic optimization[Robbins & Monro '51]

 $\lambda^{t+1} = \lambda^t - \gamma^t d^t$

Cheap estimator of $\nabla \Phi(\lambda^t)$

$$\theta^*(\lambda) \left[\nabla^2_{\theta,\theta} g(\lambda, \theta^*(\lambda)) \right]^{-1} \nabla_{\theta} f(\lambda, \theta^*(\lambda))$$

ML setting: Empirical Risk Minimization $f(\lambda, \theta) = \frac{1}{m} \sum_{j=1}^{m} f_j(\lambda, \theta), \quad g(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} g_i(\lambda, \theta)$

Can we build an unbiased estimate of $\nabla \Phi(\lambda)$?

Implicit gradient

 $\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \theta^*(\lambda)) - \nabla^2_{\lambda,\theta} g(\lambda, \theta^*(\lambda)) - \nabla^2_{\lambda,\theta} g(\lambda,$

Bottlenecks

- Solution of the inner problem
- Solution of a linear system
- Computing a gradient is expensive

Stochastic optimization[Robbins & Monro '51]

 $\lambda^{t+1} = \lambda^t - \gamma^t d^t$

Cheap estimator of $\nabla \Phi(\lambda^t)$

$$(\theta^*(\lambda)) \left[\nabla^2_{\theta,\theta} g(\lambda, \theta^*(\lambda)) \right]^{-1} \nabla_{\theta} f(\lambda, \theta^*(\lambda))$$

ML setting: Empirical Risk Minimization $f(\lambda, \theta) = \frac{1}{m} \sum_{j=1}^{m} f_j(\lambda, \theta), \quad g(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} g_i(\lambda, \theta)$

Can we build an unbiased estimate of $abla \Phi(\lambda)$?

No straightforward answer since...

$$\left[\sum_{i=1}^{n} \nabla_{\theta,\theta}^{2} g_{i}\right]^{-1} \neq \sum_{i=1}^{n} \left[\nabla_{\theta,\theta}^{2} g_{i}\right]^{-1}$$

A framework for bilevel optimization that enables stochastic and global variance reduction algorithms

M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. A framework for bilevel optimization that enables stochastic and global variance reduction algorithm. In Advances in Neural Information Processing Systems (NeurIPS), 2022. Oral

Implicit gradient

$\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \theta^{*}(\lambda)) - \nabla_{\lambda, \theta}^{2} g(\lambda, \theta^{*}(\lambda)) \left[\nabla_{\theta, \theta}^{2} g(\lambda, \theta^{*}(\lambda)) \right]^{-1} \nabla_{\theta} f(\lambda, \theta^{*}(\lambda))$

Implicit gradient

$\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \theta^*(\lambda)) + \nabla^2_{\lambda, \theta} g(\lambda, \theta^*(\lambda)) v^*(\lambda)$

$$v^*(\lambda) \triangleq - \left[\nabla^2_{\theta,\theta} g(\lambda, \theta^*(\lambda))\right]^{-1} \nabla_{\theta} f(\lambda, \theta^*(\lambda))$$

Implicit gradient

$\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \theta^*(\lambda)) + \nabla^2_{\lambda, \theta} g(\lambda, \theta^*(\lambda)) v^*(\lambda)$

Main idea: Update θ , v and λ in the following directions:

$$v^*(\boldsymbol{\lambda}) \triangleq -\left[\nabla_{\theta,\theta}^2 g(\boldsymbol{\lambda}, \boldsymbol{\theta}^*(\boldsymbol{\lambda}))\right]^{-1} \nabla_{\theta} f(\boldsymbol{\lambda}, \boldsymbol{\theta}^*(\boldsymbol{\lambda}))$$

Implicit gradient

$\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \theta)$

Main idea: Update θ , v and λ in the following directions:

• $\theta: D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$

$$^{*}(\lambda)) + \nabla^{2}_{\lambda,\theta}g(\lambda,\theta^{*}(\lambda))v^{*}(\lambda)$$

$$v^*(\boldsymbol{\lambda}) \triangleq - \left[\nabla^2_{\theta,\theta} g(\boldsymbol{\lambda}, \boldsymbol{\theta}^*(\boldsymbol{\lambda}))\right]^{-1} \nabla_{\theta} f(\boldsymbol{\lambda}, \boldsymbol{\theta}^*(\boldsymbol{\lambda}))$$

Goes towards $\theta^*(\lambda)$

Implicit gradient

$\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \theta)$

Main idea: Update θ , v and λ in the following directions:

- $\theta: D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
- $v: D_v(\theta, v, \lambda) = \nabla^2_{\theta, \theta} g(\lambda, \theta) v + \nabla_{\theta} f(\lambda, \theta)$

$$^{*}(\lambda)) + \nabla^{2}_{\lambda,\theta}g(\lambda,\theta^{*}(\lambda))v^{*}(\lambda)$$

$$v^*(\boldsymbol{\lambda}) \triangleq -\left[\nabla_{\theta,\theta}^2 g(\boldsymbol{\lambda}, \boldsymbol{\theta}^*(\boldsymbol{\lambda}))\right]^{-1} \nabla_{\theta} f(\boldsymbol{\lambda}, \boldsymbol{\theta}^*(\boldsymbol{\lambda}))$$

Goes towards $\theta^*(\lambda)$ Goes towards $v^*(\lambda)$

Implicit gradient

$\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \theta)$

Main idea: Update θ , v and λ in the following directions:

- $\theta: D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
- $v: D_v(\theta, v, \lambda) = \nabla^2_{\theta, \theta} g(\lambda, \theta) v + \nabla_{\theta} f(\lambda, \theta)$
- $\lambda: D_{\lambda}(\theta, v, \lambda) = \nabla^2_{\lambda, \theta} g(\lambda, \theta) v + \nabla_{\lambda} f(\lambda, \theta)$

$$^{*}(\lambda)) + \nabla^{2}_{\lambda,\theta}g(\lambda,\theta^{*}(\lambda))v^{*}(\lambda)$$

 $v^*(\boldsymbol{\lambda}) \triangleq - \left[\nabla_{\theta,\theta}^2 g(\boldsymbol{\lambda}, \boldsymbol{\theta}^*(\boldsymbol{\lambda}))\right]^{-1} \nabla_{\theta} f(\boldsymbol{\lambda}, \boldsymbol{\theta}^*(\boldsymbol{\lambda}))$

Goes towards $\theta^*(\lambda)$ Goes towards $v^*(\lambda)$ Approximate gradient step

Implicit gradient

$\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \theta)$

Main idea: Update θ , v and λ in the following directions:

- $\theta: D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
- $v: D_v(\theta, v, \lambda) = \nabla^2_{\theta, \theta} g(\lambda, \theta) v + \nabla_{\theta} f(\lambda, \theta)$

•
$$\lambda: D_{\lambda}(\theta, v, \lambda) = \nabla^2_{\lambda, \theta} g(\lambda, \theta) v + \nabla_{\lambda} f(\lambda, \theta)$$

 $\blacktriangleright D_{\lambda}(\theta^{*}(\lambda), v^{*}(\lambda), \lambda) = \nabla \Phi(\lambda)$

$$^{*}(\lambda)) + \nabla^{2}_{\lambda,\theta}g(\lambda,\theta^{*}(\lambda))v^{*}(\lambda)$$

 $v^*(\boldsymbol{\lambda}) \triangleq - \left[\nabla_{\theta,\theta}^2 g(\boldsymbol{\lambda}, \boldsymbol{\theta}^*(\boldsymbol{\lambda}))\right]^{-1} \nabla_{\theta} f(\boldsymbol{\lambda}, \boldsymbol{\theta}^*(\boldsymbol{\lambda}))$

Goes towards $\theta^*(\lambda)$ Goes towards $v^*(\lambda)$ Approximate gradient step

Implicit gradient

$$\nabla \Phi(\lambda) = \nabla_{\lambda} f(\lambda, \theta^{*}(\lambda)) + \nabla_{\lambda,\theta}^{2} g(\lambda, \theta^{*}(\lambda)) v^{*}(\lambda)$$

$$v^{*}(\lambda) \triangleq - \left[\nabla_{\theta,\theta}^{2} g(\lambda, \theta^{*}(\lambda))\right]^{-1} \nabla_{\theta} f(\lambda, \theta^{*}(\lambda))$$
Main idea: Update θ , v and λ in the following directions:
• θ : $D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
• v : $D_{v}(\theta, v, \lambda) = \nabla_{\theta,\theta}^{2} g(\lambda, \theta) v + \nabla_{\theta} f(\lambda, \theta)$
• λ : $D_{\lambda}(\theta, v, \lambda) = \nabla_{\lambda,\theta}^{2} g(\lambda, \theta) v + \nabla_{\lambda} f(\lambda, \theta)$
Goes towards $v^{*}(\lambda)$
Goes towards $v^{*}(\lambda)$
Approximate gradient step

 $\blacktriangleright D_{\lambda}(\theta^{*}(\lambda), v^{*}(\lambda), \lambda) = \nabla \Phi(\lambda)$

$$\begin{aligned} & \begin{bmatrix} \theta^{t+1} \\ v^{t+1} \\ \lambda^{t+1} \end{bmatrix} = \begin{bmatrix} \theta^{t} - \rho^{t} D_{\theta}(\theta^{t}, v^{t}, \lambda^{t}) \\ v^{t} - \rho^{t} D_{v}(\theta^{t}, v^{t}, \lambda^{t}) \\ \lambda^{t} - \gamma^{t} D_{\lambda}(\theta^{t}, v^{t}, \lambda^{t}) \end{bmatrix} \end{aligned} Same \label{eq:stars}$$

ne step size in heta and v because same conditioning

Update directions

- $D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
- $D_{v}(\theta, v, \lambda) = \nabla^{2}_{\theta, \theta} g(\lambda, \theta) v + \nabla_{\theta} f(\lambda, \theta)$
- $D_{\lambda}(\theta, v, \lambda) = \nabla^2_{\lambda, \theta} g(\lambda, \theta) v + \nabla_{\lambda} f(\lambda, \theta)$

Update directions

- $D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
- $D_{v}(\theta, v, \lambda) = \nabla^{2}_{\theta, \theta} g(\lambda, \theta) v + \nabla_{\theta} f(\lambda, \theta)$ $D_{\lambda}(\theta, v, \lambda) = \nabla^{2}_{\lambda, \theta} g(\lambda, \theta) v + \nabla_{\lambda} f(\lambda, \theta)$

$$f(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} f_j(\lambda,\theta), \quad g(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} g_i(\lambda,\theta)$$

Update directions

- $D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
- $D_{v}(\theta, v, \lambda) = \nabla^{2}_{\theta, \theta} g(\lambda, \theta) v + \nabla_{\theta} f(\lambda, \theta)$ $D_{\lambda}(\theta, v, \lambda) = \nabla^{2}_{\lambda, \theta} g(\lambda, \theta) v + \nabla_{\lambda} f(\lambda, \theta)$

Linear in f and g

$$f(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} f_j(\lambda,\theta), \quad g(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} g_i(\lambda,\theta)$$

Update directions

- $D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
- $D_{v}(\theta, v, \lambda) = \nabla^{2}_{\theta, \theta} g(\lambda, \theta) v + \nabla_{\theta} f(\lambda, \theta)$
- $D_{\lambda}(\theta, v, \lambda) = \nabla^2_{\lambda, \theta} g(\lambda, \theta) v + \nabla_{\lambda} f(\lambda, \theta)$

Linear in f and g

Stochastic Bilevel Dynamics

$ \begin{array}{c} \theta^{t+1} \\ v^{t+1} \\ \mathbf{v}^{t+1} \\ \mathbf{v}^{t+1} \end{array} $	_	$ \begin{array}{c} \theta^t - \rho^t D^t_{\theta} \\ v^t - \rho^t D^t_{v} \\ \lambda^t - \rho^t D^t_{v} \end{array} $
λ^{t+1}		$\lfloor \lambda^t - \gamma^t D^t_\lambda \rfloor$

$$f(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} f_j(\lambda,\theta), \quad g(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} g_i(\lambda,\theta)$$

Update directions

- $D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
- $D_{v}(\theta, v, \lambda) = \nabla^{2}_{\theta, \theta} g(\lambda, \theta) v + \nabla_{\theta} f(\lambda, \theta)$
- $D_{\lambda}(\theta, v, \lambda) = \nabla^2_{\lambda, \theta} g(\lambda, \theta) v + \nabla_{\lambda} f(\lambda, \theta)$

Linear in f and g

Stochastic Bilevel Dynamics

$\left[\theta^{t+1} \right]$		$\left[\theta^t - \rho^t D_{\theta}^t \right]$
v^{t+1}	_	$v^t - \rho^t D_v^t$
λ^{t+1}		$\lambda^t - \gamma^t D_\lambda^t$

Stochastic estimators of $D_{\theta}(\theta^t, v^t, \lambda^t)$, $D_v(\theta^t, v^t, \lambda^t)$ and $D_{\lambda}(\theta^t, v^t, \lambda^t)$

$$f(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} f_j(\lambda,\theta), \quad g(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} g_i(\lambda,\theta)$$

Update directions

- $D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
- $D_{v}(\theta, v, \lambda) = \nabla^{2}_{\theta, \theta} g(\lambda, \theta) v + \nabla_{\theta} f(\lambda, \theta)$
- $D_{\lambda}(\theta, v, \lambda) = \nabla^2_{\lambda, \theta} g(\lambda, \theta) v + \nabla_{\lambda} f(\lambda, \theta)$

Linear in f and g

Stochastic Bilevel Dynamics

$\left[\theta^{t+1} \right]$		$\left[\theta^t - \rho^t D_{\theta}^t \right]$
v^{t+1}	_	$v^t - \rho^t D_v^t$
λ^{t+1}		$\lambda^t - \gamma^t D_\lambda^t$

Stochastic estimators of $D_{\theta}(\theta^t, v^t, \lambda^t)$, $D_{v}(\theta^t, v^t, \lambda^t)$ and $D_{\lambda}(\theta^t, v^t, \lambda^t)$

ERM

$$f(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} f_j(\lambda,\theta), \quad g(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} g_i(\lambda,\theta)$$

SOBA directions

Sample $i \in \{1, ..., n\}$ and $j \in \{1, ..., m\}$ and set

$$D_{\theta}^{t} = \nabla_{\theta} g_{i}(\lambda^{t}, \theta^{t})$$
$$D_{v}^{t} = \nabla_{\theta,\theta}^{2} g_{i}(\lambda^{t}, \theta^{t})v^{t} + \nabla_{\theta} f_{j}(\lambda^{t}, \theta^{t})$$
$$D_{\lambda}^{t} = \nabla_{\lambda,\theta}^{2} g_{i}(\lambda^{t}, \theta^{t})v^{t} + \nabla_{\lambda} f_{j}(\lambda^{t}, \theta^{t})$$

SOBA directions

Sample $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, m\}$ and set $D_{\theta}^{t} = \nabla_{\theta} q_{i}(\lambda^{t}, \theta^{t})$

 $D_v^t = \nabla_{\theta,\theta}^2 g_i(\lambda^t, \theta^t) v^t + \nabla_{\theta} f_j(\lambda^t, \theta^t)$ $D_{\lambda}^{t} = \nabla_{\lambda,\theta}^{2} g_{i}(\lambda^{t}, \theta^{t}) v^{t} + \nabla_{\lambda} f_{j}(\lambda^{t}, \theta^{t})$

SOBA directions

Sample $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, m\}$ and set $D_{\theta}^{t} = \nabla_{\theta} g_{i}(\lambda^{t}, \theta^{t})$

Iteration cost

 $D_v^t = \nabla_{\theta,\theta}^2 g_i(\lambda^t, \theta^t) v^t + \nabla_{\theta} f_j(\lambda^t, \theta^t)$ $D_{\lambda}^{t} = \nabla_{\lambda,\theta}^{2} g_{i}(\lambda^{t}, \theta^{t}) v^{t} + \nabla_{\lambda} f_{j}(\lambda^{t}, \theta^{t})$

SOBA directions

Sample $i \in \{1, ..., n\}$ and $j \in \{1, ..., m\}$ $D_{\theta}^{t} = \nabla_{\theta} g_{i}(\lambda)$ $D_v^t = \nabla_{\theta,\theta}^2 g_i($ $D^t_{\lambda} = \nabla^2_{\lambda,\theta} g_i($

Iteration cost

•

} and set

$$t, \theta^{t}$$
)
 $(\lambda^{t}, \theta^{t})v^{t} + \nabla_{\theta}f_{j}(\lambda^{t}, \theta^{t})$
 $(\lambda^{t}, \theta^{t})v^{t} + \nabla_{\lambda}f_{j}(\lambda^{t}, \theta^{t})$

Gradients: computed efficiently by reverse mode automatic differentiation [Linnainmaa et al. '70]

SOBA directions

Sample $i \in \{1, ..., n\}$ and $j \in \{1, ..., m\}$ $D_{\theta}^{t} = \nabla_{\theta} g_{i}(\lambda)$ $D_v^t = \nabla_{\theta,\theta}^2 g_i($ $D_{\lambda}^{t} = \nabla_{\lambda,\theta}^{2} g_{i}($

Iteration cost

- ullet
- HVPs: At first sight 😡 😡 😡, but...

$$\begin{array}{l} \text{and set} \\ {}^{t}, \theta^{t} \end{pmatrix} \\ \hline \lambda^{t}, \theta^{t}) v^{t} + \nabla_{\theta} f_{j} (\lambda^{t}, \theta^{t}) \\ \hline \lambda^{t}, \theta^{t}) v^{t} + \nabla_{\lambda} f_{j} (\lambda^{t}, \theta^{t}) \end{array}$$

Gradients: computed efficiently by reverse mode automatic differentiation [Linnainmaa et al. '70]

M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. How to compute Hessian-vector products? In *ICLR* blogpost track, 2024. Spotlight

Efficient computation by automatic differentiation [Pearlmutter '94]

M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. How to compute Hessian-vector products? In *ICLR* blogpost track, 2024. Spotlight

Efficient computation by automatic differentiation [Pearlmutter '94]

 $\nabla_{\theta,\theta}^2 g_i(\lambda^t, \theta^t) v^t = \nabla_{\theta} \left[\left\langle \nabla_{\theta} g_i(\lambda^t, \theta^t), v^t \right\rangle \right]$

M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. How to compute Hessian-vector products? In *ICLR* blogpost track, 2024. Spotlight

Efficient computation by automatic differentiation [Pearlmutter '94]

 $\nabla_{\theta,\theta}^2 g_i(\lambda^t, \theta^t) v^t = \nabla_\theta \left[\left\langle \nabla_\theta g_i(\lambda^t, \theta^t), v^t \right\rangle \right]$

 reverse-over-reverse: « grad of the JVP » jax.grad(lambda y: jnp.vdot(jax.grad(g)(y), v))(params)

M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. How to compute Hessian-vector products? In *ICLR* blogpost track, 2024. Spotlight

Efficient computation by automatic differentiation [Pearlmutter '94]

 $\nabla_{\theta,\theta}^2 g_i(\lambda^t, \theta^t) v^t = \nabla_\theta \left[\left\langle \nabla_\theta g_i(\lambda^t, \theta^t), v^t \right\rangle \right]$

 reverse-over-reverse: « grad of the JVP » jax.grad(lambda y: jnp.vdot(jax.grad(g)(y), v))(params)

 reverse-over-forward: « grad of the JVP » jax.grad(lambda y: jax.jvp(g, (y,), (v,))[1])(params)

M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. How to compute Hessian-vector products? In *ICLR* blogpost track, 2024. Spotlight

Efficient computation by automatic differentiation [Pearlmutter '94]

 $\nabla_{\theta,\theta}^2 g_i(\lambda^t, \theta^t) v^t = \nabla_\theta \left[\left\langle \nabla_\theta g_i(\lambda^t, \theta^t), v^t \right\rangle \right]$

 reverse-over-reverse: « grad of the JVP » jax.grad(lambda y: jnp.vdot(jax.grad(g)(y), v))(params)

 reverse-over-forward: « grad of the JVP » jax.grad(lambda y: jax.jvp(g, (y,), (v,))[1])(params)

 forward-over-reverse: « JVP of the grad » jax.jvp(jax.grad(g), (params,), (v,))[1]

M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. How to compute Hessian-vector products? In *ICLR* blogpost track, 2024. Spotlight

Efficient computation by automatic differentiation [Pearlmutter '94]

 $\nabla_{\theta,\theta}^2 g_i(\lambda^t, \theta^t) v^t = \nabla_\theta \left[\left\langle \nabla_\theta g_i(\lambda^t, \theta^t), v^t \right\rangle \right]$

 reverse-over-reverse: « grad of the JVP » jax.grad(lambda y: jnp.vdot(jax.grad(g)(y), v))(params)

 reverse-over-forward: « grad of the JVP » jax.grad(lambda y: jax.jvp(g, (y,), (v,))[1])(params)

 forward-over-reverse: « JVP of the grad » jax.jvp(jax.grad(g), (params,), (v,))[1]

M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. How to compute Hessian-vector products? In *ICLR* blogpost track, 2024. Spotlight

Efficient computation by automatic differentiation [Pearlmutter '94]

 $\nabla_{\theta,\theta}^2 g_i(\lambda^t, \theta^t) v^t = \nabla_\theta \left[\left\langle \nabla_\theta g_i(\lambda^t, \theta^t), v^t \right\rangle \right]$

 reverse-over-reverse: « grad of the JVP » jax.grad(lambda y: jnp.vdot(jax.grad(g)(y), v))(params)

 reverse-over-forward: « grad of the JVP » jax.grad(lambda y: jax.jvp(g, (y,), (v,))[1])(params)

 forward-over-reverse: « JVP of the grad » jax.jvp(jax.grad(g), (params,), (v,))[1]

Theorem

Assume that

Theorem

Assume that

1. the outer function f is twice differentiable with Lipschitz derivatives

Theorem

Assume that

- 1. the outer function f is twice differentiable with Lipschitz derivatives
- 2. the inner function g is three times differentiable with Lipschitz derivatives

Theorem

Assume that

- 1. the outer function f is twice differentiable with Lipschitz derivatives 2. the inner function g is three times differentiable with Lipschitz derivatives
- 3. the stochastic directions verify

 $\mathbb{E}_t \left[\|D_{\theta}^t\|^2 \right] \le B_{\theta}(1 + \|D_{\theta}(\theta^t, v^t, \lambda^t)\|^2), \quad \mathbb{E}_t \left[\|D_v^t\|^2 \right] \le B_v(1 + \|D_v(\theta^t, v^t, \lambda^t)\|^2),$ $\mathbb{E}_t \left[\|D_{\lambda}^t\|^2 \right] \le B_{\lambda}$

Theorem

Assume that

- 1. the outer function f is twice differentiable with Lipschitz derivatives 2. the inner function g is three times differentiable with Lipschitz derivatives
- 3. the stochastic directions verify

Then, for step sizes $\rho^t \simeq t^{-\frac{1}{2}}$ and $\gamma^t \simeq t^{-\frac{1}{2}}$ it holds

- $\mathbb{E}_t \left[\|D_{\theta}^t\|^2 \right] \le B_{\theta}(1 + \|D_{\theta}(\theta^t, v^t, \lambda^t)\|^2), \quad \mathbb{E}_t \left[\|D_v^t\|^2 \right] \le B_v(1 + \|D_v(\theta^t, v^t, \lambda^t)\|^2),$ $\mathbb{E}_t \left[\|D_{\lambda}^t\|^2 \right] \le B_{\lambda}$

 - $\inf_{0 \le t \le T-1} \mathbb{E}[\|\nabla \Phi(\lambda^t)\|^2] \le \mathcal{O}(\log(T)T^{-\frac{1}{2}})$

Theorem

Assume that

- 1. the outer function f is twice differentiable with Lipschitz derivatives 2. the inner function g is three times differentiable with Lipschitz derivatives
- 3. the stochastic directions verify

Then, for step sizes $\rho^t \simeq t^{-\frac{1}{2}}$ and $\gamma^t \simeq t^{-\frac{1}{2}}$ it holds Decreasing step sizes

- $\mathbb{E}_t \left[\|D_{\theta}^t\|^2 \right] \le B_{\theta}(1 + \|D_{\theta}(\theta^t, v^t, \lambda^t)\|^2), \quad \mathbb{E}_t \left[\|D_v^t\|^2 \right] \le B_v(1 + \|D_v(\theta^t, v^t, \lambda^t)\|^2),$ $\mathbb{E}_t \left[\|D_{\lambda}^t\|^2 \right] \le B_{\lambda}$

 - $\inf_{0 \le t \le T-1} \mathbb{E}[\|\nabla \Phi(\lambda^t)\|^2] \le \mathcal{O}(\log(T)T^{-\frac{1}{2}})$

Theorem

Assume that

- 1. the outer function f is twice differentiable with Lipschitz derivatives 2. the inner function g is three times differentiable with Lipschitz derivatives
- 3. the stochastic directions verify

Then, for step sizes $\rho^t \simeq t^{-\frac{1}{2}}$ and $\gamma^t \simeq t^{-\frac{1}{2}}$ it holds

Similar to the rate of SGD for nonconvex smooth functions [Ghadimi '13]

- $\mathbb{E}_t \left[\|D_{\theta}^t\|^2 \right] \le B_{\theta}(1 + \|D_{\theta}(\theta^t, v^t, \lambda^t)\|^2), \quad \mathbb{E}_t \left[\|D_v^t\|^2 \right] \le B_v(1 + \|D_v(\theta^t, v^t, \lambda^t)\|^2),$ $\mathbb{E}_t \left[\|D_{\lambda}^t\|^2 \right] \le B_{\lambda}$

 - $\inf_{0 \le t \le T-1} \mathbb{E}\left[\|\nabla \Phi(\lambda^t)\|^2 \right] \le \mathcal{O}\left(\log(T)T^{-\frac{1}{2}}\right)$

Quadratic setting

$$f(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} \left\langle A_{j}^{f} \begin{bmatrix} \lambda \\ \theta \end{bmatrix}, \begin{bmatrix} \lambda \\ \theta \end{bmatrix} \right\rangle + \left\langle b_{j}^{f}, \begin{bmatrix} \lambda \\ \theta \end{bmatrix}$$
$$g(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} \left\langle A_{i}^{g} \begin{bmatrix} \lambda \\ \theta \end{bmatrix}, \begin{bmatrix} \lambda \\ \theta \end{bmatrix}, \begin{bmatrix} \lambda \\ \theta \end{bmatrix} \right\rangle + \left\langle b_{i}^{g}, \begin{bmatrix} \lambda \\ \theta \end{bmatrix} \right\rangle$$

Fundamental descent lemma

 $\delta_{\theta}^{t+1} \le (1 - \rho \mu_g) \delta_{\theta}^t + \rho^2 \mathbb{E}[\|D_{\theta}^t\|^2]$

 $\delta_v^{t+1} \le (1 - \rho \mu_g) \delta_v^t + \rho \delta_\theta^t + \rho^2 \mathbb{E}[\|D\|]$

 $\Phi^{t+1} \le \Phi^t - \gamma \mathbb{E}\left[\|\nabla \Phi(\lambda^t)\|^2 \right] - \gamma \mathbb{E}\left[\|\nabla \Phi(\lambda^t)\|^2 \right]$

 $\delta_{\theta}^{t} = \mathbb{E} \left[\| \theta^{t} - \theta^{*}(\lambda^{t}) \|^{2} \right]$ $\delta_{v}^{t} = \mathbb{E} \left[\| v^{t} - v^{*}(\lambda^{t}) \|^{2} \right]$ $\Phi^{t} = \mathbb{E} [\Phi(\lambda^{t})]$

$$\begin{aligned} \hat{Y} &= \rho^2 \mathbb{E}[\|D_{\lambda}^t\|^2] + \frac{\gamma^2}{\rho} \mathbb{E}[\|D_{\lambda}(\theta^t, v^t, \lambda^t)\|^2] \\ \hat{V}_v^t\|^2] &+ \rho^2 \mathbb{E}[\|D_{\lambda}^t\|^2] + \frac{\gamma^2}{\rho} \mathbb{E}[\|D_{\lambda}(\theta^t, v^t, \lambda^t)\|^2] \\ \|D_{\lambda}(\theta^t, v^t, \lambda^t)\|] &+ \gamma(\delta_{\theta}^t + \delta_v^t) + \gamma^2 \mathbb{E}\left[\|D_{\lambda}^t\|^2\right] \end{aligned}$$

Fundamental descent lemma

$$\delta_{\theta}^{t+1} \leq (1 - \rho\mu_g)\delta_{\theta}^t + \rho^2 \mathbb{E}[\|D_{\theta}^t\|^2]$$
$$\delta_v^{t+1} \leq (1 - \rho\mu_g)\delta_v^t + \rho\delta_{\theta}^t + \rho^2 \mathbb{E}[\|D_{\theta}^t\|^2]$$
$$\Phi^{t+1} \leq \Phi^t - \gamma \mathbb{E}\left[\|\nabla\Phi(\lambda^t)\|^2\right] - \gamma \mathbb{E}[|\nabla\Phi(\lambda^t)|^2]$$

Variance terms prevent from converging if not converging towards 0

 $\delta_{\theta}^{t} = \mathbb{E} \left[\| \theta^{t} - \theta^{*}(\lambda^{t}) \|^{2} \right]$ $\delta_{v}^{t} = \mathbb{E} \left[\| v^{t} - v^{*}(\lambda^{t}) \|^{2} \right]$ $\Phi^{t} = \mathbb{E} [\Phi(\lambda^{t})]$

Fundamental descent lemma

$$\delta_{\theta}^{t+1} \leq (1 - \rho\mu_g)\delta_{\theta}^t + \frac{\rho^2 \mathbb{E}[\|D_{\theta}^t\|^2}{\delta_v^{t+1}} \leq (1 - \rho\mu_g)\delta_v^t + \rho\delta_{\theta}^t + \frac{\rho^2 \mathbb{E}[\|D_{\theta}^t\|^2}{\Phi^{t+1}} \leq \Phi^t - \gamma \mathbb{E}\left[\|\nabla \Phi(\lambda^t)\|^2\right] - \gamma \mathbb{E}\left[\|\nabla \Phi(\lambda^t)\|^2\right] = \gamma \mathbb$$

Variance terms prevent from converging if not converging towards 0 Make the step sizes decreasing -> leads to slow convergence

ullet

 $\delta_{\theta}^{t} = \mathbb{E}\left[\|\theta^{t} - \theta^{*}(\lambda^{t})\|^{2} \right]$ $\delta_v^t = \mathbb{E}\left[\|v^t - v^*(\lambda^t)\|^2 \right]$ $\Phi^t = \mathbb{E}[\Phi(\lambda^t)]$

Fundamental descent lemma

$$\delta_{\theta}^{t+1} \leq (1 - \rho\mu_g)\delta_{\theta}^t + \frac{\rho^2 \mathbb{E}[\|D_{\theta}^t\|^2}{\delta_v^{t+1}} \leq (1 - \rho\mu_g)\delta_v^t + \rho\delta_{\theta}^t + \frac{\rho^2 \mathbb{E}[\|D_{\theta}^t\|^2}{\Phi^{t+1}} \leq \Phi^t - \gamma \mathbb{E}\left[\|\nabla \Phi(\lambda^t)\|^2\right] - \gamma \mathbb{E}[$$

Variance terms prevent from converging if not converging towards 0

- Make the step sizes decreasing -> leads to slow convergence lacksquare
- ullet

 $\delta_{\theta}^{t} = \mathbb{E}\left[\|\theta^{t} - \theta^{*}(\lambda^{t})\|^{2} \right]$ $\delta_v^t = \mathbb{E}\left[\|v^t - v^*(\lambda^t)\|^2 \right]$ $\Phi^t = \mathbb{E}[\Phi(\lambda^t)]$

Make the variance decrease? -> Variance reduction algorithms[Johnson et al. 13, Defazio et al. '14, Bietti & Mairal '17]

General principle

 Adaptation of SARAH/SPIDER to bilevel setting [Nguyen et al. '17, Fang et al. '18]

General principle

- Adaptation of SARAH/SPIDER to bilevel setting [Nguyen et al. '17, Fang et al. '18]
- Recursive estimate of the directions

Recursive estimation of the directions

Sample
$$i \in \{1, \dots, n\}$$
 and $j \in \{1, \dots, m\}$ and
 $D_{\theta}^{t,k} = D_{\theta}^{i,j}(\theta^{t,k}, v^{t,k}, \lambda^{t,k}) \in D_{v}^{t,k} = D_{v}^{i,j}(\theta^{t,k}, v^{t,k}, \lambda^{t,k}) \in D_{\lambda}^{t,k} = D_{\lambda}^{i,j}(\theta^{t,k}, v^{t,k}, \lambda^{t,k}) \in D_{\lambda}^{t,k} = D_{\lambda}^{i,j}(\theta^{t,k}, v^{t,k}, \lambda^{t,k}) \in D_{\lambda}^{t,k} = D_{\lambda}^{i,j}(\theta^{t,k}, v^{t,k}, \lambda^{t,k}) \in D_{\lambda}^{t,k}$

General principle

- Adaptation of SARAH/SPIDER to bilevel setting [Nguyen et al. '17, Fang et al. '18]
- Recursive estimate of the directions

Recursive estimation of the directions

Sample
$$i \in \{1, \ldots, n\}$$
 and $j \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, m\}$ and $D_{\theta}^{t,k} = D_{\theta}^{i,j}(\theta^{t,k}, v^{t,k}, \lambda^{t,k})$ and $D_{v}^{t,k} = D_{v}^{i,j}(\theta^{t,k}, v^{t,k}, \lambda^{t,k})$ and $D_{\lambda}^{t,k} = D_{\lambda}^{i,j}(\theta^{t,k}, v^{t,k}, \lambda^{t,k})$

Inner loop index

General principle

- Adaptation of SARAH/SPIDER to bilevel Setting [Nguyen et al. '17, Fang et al. '18]
- Recursive estimate of the directions

General principle

- Adaptation of SARAH/SPIDER to bilevel Setting [Nguyen et al. '17, Fang et al. '18]
- Recursive estimate of the directions

General principle

- Adaptation of SARAH/SPIDER to bilevel Setting [Nguyen et al. '17, Fang et al. '18]
- Recursive estimate of the directions
- Periodic reinitialization of the estimate •

Reinitialization of estimate directions $D_{\theta}^{t,0} = D_{\theta}(\theta^{t,0}, v^{t,0}, \lambda^{t,0})$ $D_{v}^{t,0} = D_{v}(\theta^{t,0}, v^{t,0}, \lambda^{t,0})$ $D_{\lambda}^{t,0} = D_{\lambda}(\theta^{t,0}, v^{t,0}, \lambda^{t,0})$ Full batch^directions

 $D_{\theta}^{t,k} = D_{\theta}^{i,j}(\theta^{t,k}, v^{t,k}, \lambda^{t,k}) - D_{\theta}^{i,j}(\theta^{t,k-1}, v^{t,k-1}, \lambda^{t,k-1}) + D_{\theta}^{t,k-1}$ $D_{v}^{t,k} = D_{v}^{i,j}(\theta^{t,k}, v^{t,k}, \lambda^{t,k}) - D_{v}^{i,j}(\theta^{t,k-1}, v^{t,k-1}, \lambda^{t,k-1}) + D_{v}^{t,k-1}$ $D_{\lambda}^{t,k} = D_{\lambda}^{i,j}(\theta^{t,k}, v^{t,k}, \lambda^{t,k}) - D_{\lambda}^{i,j}(\theta^{t,k-1}, v^{t,k-1}, \lambda^{t,k-1}) + D_{\lambda}^{t,k-1}$

Unbiased estimators of the directions

Theorem

Assume that

Theorem

Assume that

1. the outer function f is twice differentiable with Lipschitz derivatives

Theorem

Assume that

- 1. the outer function f is twice differentiable with Lipschitz derivatives
- 2. the inner function g is three times differentiable with Lipschitz derivatives

Theorem

Assume that

- 1. the outer function f is twice differentiable with Lipschitz derivatives 2. the inner function g is three times differentiable with Lipschitz derivatives
- Then, for constant step sizes proportional to $(n+m)^{-\frac{1}{2}}$, $\mathcal{O}((n+m)^{\frac{1}{2}}\epsilon^{-1})$

calls to oracles are sufficient to find an ϵ -stationary point
Convergence of SRBA

Theorem

Assume that

- 1. the outer function f is twice differentiable with Lipschitz derivatives 2. the inner function g is three times differentiable with Lipschitz derivatives Then, for constant step sizes proportional to $(n+m)^{-\frac{1}{2}}$,
- $\mathcal{O}(|$

calls to oracles are sufficient to find an ϵ -stationary point

Similar to the rate of SARAH for nonconvex smooth finite sums [Nguyen '22]

$$(n+m)^{\frac{1}{2}}\epsilon^{-1})$$

Lower bound for bilevel empirical risk minimization

M. Dagréou, T. Moreau, S. Vaiter, P. Ablin. A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2024.

Question

What is the amount of oracle computations I need to solve bilevel ERM with smooth outer and strongly convex inner functions by only accessing individual gradient of the outer function and gradient/HVP/JVP of the inner function?

Proxy of the total amount of elementary operations of an algorithm

Question

What is the amount of oracle computations I need to solve bilevel ERM with smooth outer and strongly convex inner functions by only accessing individual gradient of the outer function and gradient/HVP/JVP of the inner function?

Proxy of the total amount of elementary operations of an algorithm

Question

function and gradient/HVP/JVP of the inner function?

Proxy of the total amount of elementary operations of an algorithm

Question

function and gradient/HVP/JVP of the inner function?

Class of algorithms

Finite sum minimization setting

$$\min_{x \in \mathbb{R}^d} h(x) = \frac{1}{n} \sum_{i=1}^n h_i(x)$$

Finite sum minimization setting

L-smooth

Finite sum minimization setting

$$\min_{x \in \mathbb{R}^d} h(x) = \frac{1}{n} \sum_{i=1}^n h_i(x)$$

$$L-\text{smooth}$$

Algorithm class

 $x^{t+1} \in x^0 + \operatorname{span}\left\{\nabla h_{i_0}(x^0), \cdots, \nabla h_{i_t}(x^t)\right\}$

Finite sum minimization setting

Algorithm class $x^{t+1} \in x^0 + \operatorname{span}\left\{\nabla h_{i_0}(x^0), \cdots, \nabla h_{i_t}(x^t)\right\}$

Random variables in $\{1, \ldots, n\}$

Finite sum minimization setting

Algorithm class $x^{t+1} \in x^0 + \operatorname{span}\left\{\nabla h_{i_0}(x^0), \cdots, \nabla h_{i_t}(x^t)\right\}$

Random variables in $\{1, \ldots, n\}$

Upper bound [Nguyen '22]

There exists an algorithm which is able to find an ϵ -stationary point of any function hin less than

$$\mathcal{O}(\sqrt{n}\epsilon^{-1})$$

oracle calls.

Finite sum minimization setting

Algorithm class $x^{t+1} \in x^0 + \operatorname{span}\left\{\nabla h_{i_0}(x^0), \cdots, \nabla h_{i_t}(x^t)\right\}$

Random variables in $\{1, \ldots, n\}$

Upper bound [Nguyen '22]

There exists an algorithm which is able to find an ϵ -stationary point of any function hin less than

$$\mathcal{O}(\sqrt{n}\epsilon^{-1})$$

oracle calls.

Lower bound [Zhou et al. '19]

Given an algorithm A we can find a function h such that A requires at least $\Omega(\sqrt{n}\epsilon^{-1})$

oracle calls to find an ϵ -stationary point.

A single-level problem is a bilevel problem

$$\min_{x \in \mathbb{R}^d} h(x)$$

A single-level problem is a bilevel problem

$$\min_{x \in \mathbb{R}^d} \Phi(x) = h(y^*(x))$$
$$y^*(x) \in \operatorname{argmin}_{y \in \mathbb{R}^d} \frac{1}{2} \|y - x\|^2$$

A single-level problem is a bilevel problem

$$\min_{x \in \mathbb{R}^d} \Phi(x) = h(y^*(x))$$
$$y^*(x) \in \operatorname{argmin}_{y \in \mathbb{R}^d} \frac{1}{2} \|y - x\|^2$$

We could expect a higher lower bound

A single-level problem is a bilevel problem

$$\min_{x \in \mathbb{R}^d} \Phi(x) = h(y^*(x))$$
$$y^*(x) \in \operatorname{argmin}_{y \in \mathbb{R}^d} \frac{1}{2} \|y - x\|^2$$

Algorithm classes

A single-level problem is a bilevel problem

$$\min_{x \in \mathbb{R}^d} \Phi(x) = h(y^*(x))$$
$$y^*(x) \in \operatorname{argmin}_{y \in \mathbb{R}^d} \frac{1}{2} \|y - x\|^2$$

Algorithm classes

- Single-level analysis assumes that we sample gradients of Φ

A single-level problem is a bilevel problem

$$\min_{x \in \mathbb{R}^d} \Phi(x) = h(y^*(x))$$
$$y^*(x) \in \operatorname{argmin}_{y \in \mathbb{R}^d} \frac{1}{2} \|y - x\|^2$$

Algorithm classes

- Single-level analysis assumes that we sample gradients of Φ
- Classical bilevel algorithms do not have access to the exact value of this gradient

A single-level problem is a bilevel problem

$$\min_{x \in \mathbb{R}^d} \Phi(x) = h(y^*(x))$$
$$y^*(x) \in \operatorname{argmin}_{y \in \mathbb{R}^d} \frac{1}{2} \|y - x\|^2$$

Algorithm classes

- Single-level analysis assumes that we sample gradients of Φ
- Classical bilevel algorithms do not have access to the exact value of this gradient

Update directions

- $D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
- $D_{v}(\boldsymbol{\theta}, v, \boldsymbol{\lambda}) = \nabla^{2}_{\boldsymbol{\theta}, \boldsymbol{\theta}} g(\boldsymbol{\lambda}, \boldsymbol{\theta}) v + \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\lambda}, \boldsymbol{\theta})$
- $D_{\lambda}(\theta, v, \lambda) = \nabla^2_{\lambda, \theta} g(\lambda, \theta) v + \nabla_{\lambda} f(\lambda, \theta)$

Update directions

- $D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
- $D_v(\theta, v, \lambda) = \nabla^2_{\theta, \theta} g(\lambda, \theta) v + \nabla_{\theta} f(\lambda, \theta)$
- $D_{\lambda}(\theta, v, \lambda) = \nabla^2_{\lambda, \theta} g(\lambda, \theta) v + \nabla_{\lambda} f(\lambda, \theta)$

Linear Bilevel Algorithm

 $\begin{aligned} \theta^{t+1} &\in \theta^{0} + \operatorname{span} \left\{ \nabla_{\theta} g_{i_{0}}(\lambda^{0}, \theta^{0}), \dots, \nabla_{\theta} g_{i_{t}}(\lambda^{t}, \theta^{t}) \right\} \\ v^{t+1} &\in v^{0} + \operatorname{span} \left\{ \nabla_{\theta, \theta}^{2} g_{i_{0}}(\lambda^{0}, \theta^{0}) v^{0} + \nabla_{\theta} f_{j_{0}}(\lambda^{0}, \theta^{0}), \\ \dots, \nabla_{\theta} g_{i_{t}}(\lambda^{t}, \theta^{t}) v^{t} + \nabla_{\theta} f_{j_{t}}(\lambda^{t}, \theta^{t}) \right\} \end{aligned}$

 $\lambda^{t+1} \in \lambda^{0} + \operatorname{span} \left\{ \nabla^{2}_{\lambda,\theta} g_{i_{0}}(\lambda^{0}, \theta^{0}) v^{0} + \nabla_{\lambda} f_{j_{0}}(\lambda^{0}, \theta^{0}), \\ \dots, \nabla^{2}_{\lambda,\theta} g_{i_{t}}(\lambda^{t}, \theta^{t}) v^{t} + \nabla_{\lambda} f_{j_{t}}(\lambda^{t}, \theta^{t}) \right\}$

Update directions

- $D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
- $D_{v}(\theta, v, \lambda) = \nabla^{2}_{\theta, \theta} g(\lambda, \theta) v + \nabla_{\theta} f(\lambda, \theta)$
- $D_{\lambda}(\theta, v, \lambda) = \nabla^2_{\lambda, \theta} g(\lambda, \theta) v + \nabla_{\lambda} f(\lambda, \theta)$
- Contains several several bilevel algorithms

Linear Bilevel Algorithm

 $\begin{aligned} \theta^{t+1} &\in \theta^0 + \operatorname{span} \left\{ \nabla_{\theta} g_{i_0}(\lambda^0, \theta^0), \dots, \nabla_{\theta} g_{i_t}(\lambda^t, \theta^t) \right\} \\ v^{t+1} &\in v^0 + \operatorname{span} \left\{ \nabla_{\theta, \theta}^2 g_{i_0}(\lambda^0, \theta^0) v^0 + \nabla_{\theta} f_{j_0}(\lambda^0, \theta^0), \\ \dots, \nabla_{\theta} g_{i_t}(\lambda^t, \theta^t) v^t + \nabla_{\theta} f_{j_t}(\lambda^t, \theta^t) \right\} \end{aligned}$

 $\lambda^{t+1} \in \lambda^{0} + \operatorname{span} \left\{ \nabla^{2}_{\lambda,\theta} g_{i_{0}}(\lambda^{0}, \theta^{0}) v^{0} + \nabla_{\lambda} f_{j_{0}}(\lambda^{0}, \theta^{0}), \\ \dots, \nabla^{2}_{\lambda,\theta} g_{i_{t}}(\lambda^{t}, \theta^{t}) v^{t} + \nabla_{\lambda} f_{j_{t}}(\lambda^{t}, \theta^{t}) \right\}$

Update directions

- $D_{\theta}(\theta, v, \lambda) = \nabla_{\theta} g(\lambda, \theta)$
- $D_v(\theta, v, \lambda) = \nabla^2_{\theta, \theta} g(\lambda, \theta) v + \nabla_{\theta} f(\lambda, \theta)$
- $D_{\lambda}(\theta, v, \lambda) = \nabla^2_{\lambda, \theta} g(\lambda, \theta) v + \nabla_{\lambda} f(\lambda, \theta)$
- Contains several several bilevel algorithms
- But excludes non-linear subroutines like Neumann iterations

Linear Bilevel Algorithm

 $\begin{aligned} \theta^{t+1} &\in \theta^0 + \operatorname{span} \left\{ \nabla_{\theta} g_{i_0}(\lambda^0, \theta^0), \dots, \nabla_{\theta} g_{i_t}(\lambda^t, \theta^t) \right\} \\ v^{t+1} &\in v^0 + \operatorname{span} \left\{ \nabla_{\theta, \theta}^2 g_{i_0}(\lambda^0, \theta^0) v^0 + \nabla_{\theta} f_{j_0}(\lambda^0, \theta^0), \\ \dots, \nabla_{\theta} g_{i_t}(\lambda^t, \theta^t) v^t + \nabla_{\theta} f_{j_t}(\lambda^t, \theta^t) \right\} \end{aligned}$

 $\lambda^{t+1} \in \lambda^{0} + \operatorname{span} \left\{ \nabla^{2}_{\lambda,\theta} g_{i_{0}}(\lambda^{0}, \theta^{0}) v^{0} + \nabla_{\lambda} f_{j_{0}}(\lambda^{0}, \theta^{0}), \\ \dots, \nabla^{2}_{\lambda,\theta} g_{i_{t}}(\lambda^{t}, \theta^{t}) v^{t} + \nabla_{\lambda} f_{j_{t}}(\lambda^{t}, \theta^{t}) \right\}$

Bilevel Optimization Problem

 $\min_{\lambda \in \mathbb{R}^{d_{\lambda}}} \Phi(\lambda) \triangleq f(\lambda, \theta^{*}(\lambda))$ $\theta^{*}(\lambda) \in \operatorname*{argmin}_{\theta \in \mathbb{R}^{d_{\theta}}} g(\lambda, \theta)$

Bilevel Optimization Problem

 $\min_{\lambda \in \mathbb{R}^{d_{\lambda}}} \Phi(\lambda) \triangleq f(\lambda, \theta^{*}(\lambda))$ $\theta^{*}(\lambda) \in \operatorname*{argmin}_{\theta \in \mathbb{R}^{d_{\theta}}} g(\lambda, \theta)$

Empirical Risk Minimization

$$f(\lambda,\theta) = \frac{1}{m} \sum_{j=1}^{m} f_j(\lambda,\theta), \quad g(\lambda,\theta) = \frac{1}{n} \sum_{i=1}^{n} g_i(\lambda,\theta)$$

Bilevel Optimization Problem

 $\min_{\lambda \in \mathbb{R}^{d_{\lambda}}} \Phi(\lambda) \triangleq f(\lambda, \theta^*(\lambda))$ $\theta^*(\lambda) \in \operatorname{argmin} g(\lambda, \theta)$ $\theta \in \mathbb{R}^{d_{ heta}}$

Bilevel Optimization Problem

 $\min_{\lambda \in \mathbb{R}^{d_{\lambda}}} \Phi(\lambda) \triangleq f(\lambda, \theta^*(\lambda))$ $\theta^*(\lambda) \in \operatorname{argmin} g(\lambda, \theta)$ $\theta \in \mathbb{R}^{d_{ heta}}$

Lower bound for bilevel ERM

Theorem (informal)

of bilevel ERM problem such that such that finding a point $\hat{\lambda} \in \mathbb{R}^{d_{\lambda}}$ that verifies

requires at least $\Omega(m^{\frac{1}{2}}\epsilon^{-1})$ gradient/HVP/JVP computations.

- For any linear bilevel algorithm, for a large enough dimension d_{λ} we can find an instantiation $\mathbb{E}[\|\nabla \Phi(\hat{\lambda})\|^2] \le \epsilon$

Lower bound for bilevel ERM

Theorem (informal)

of bilevel ERM problem such that such that finding a point $\hat{\lambda} \in \mathbb{R}^{d_{\lambda}}$ that verifies

requires at least $\Omega(m^{\frac{1}{2}}\epsilon^{-1})$ gradient/HVP/JVP computations.

• Similar to result of finite sum minimization in nonconvex setting [Zhou et al. '19]

- For any linear bilevel algorithm, for a large enough dimension d_{λ} we can find an instantiation $\mathbb{E}[\|\nabla \Phi(\hat{\lambda})\|^2] \le \epsilon$

Lower bound for bilevel ERM

Theorem (informal)

of bilevel ERM problem such that such that finding a point $\hat{\lambda} \in \mathbb{R}^{d_{\lambda}}$ that verifies

requires at least $\Omega(m^{\frac{1}{2}}\epsilon^{-1})$ gradient/HVP/JVP computations.

- Similar to result of finite sum minimization in nonconvex setting [Zhou et al. '19]
- Still missing the dependency on the inner number of samples

- For any linear bilevel algorithm, for a large enough dimension d_{λ} we can find an instantiation $\mathbb{E}[\|\nabla \Phi(\hat{\lambda})\|^2] \le \epsilon$

Numerical evaluation of bilevel algorithms

Benchmark of bilevel algorithms

Benchmark of bilevel algorithms

Open and reproducible benchmark

benchopt / benchmark_bilevel		Q Type [] to search		
<> Code Issues	🗄 Projects 🖽 Wiki 🕕 Security	🗠 Insights		
benchmark_bilevel (Public)		S Edit Pins 👻 💿 Unwatch 5 📼	♀ Fork 6 ▼ ★ Starred 34 ▼	
រិះ main 👻 ំំំំំំំំំ 6 Branches 🟷 0 Tags	Q Go to file	t Add file 👻 <> Code 👻	About	
See tomMoral FIX deprecation of pip:->pip:: (#45) <			Benchmark for bi-level optimization solvers	
.github/workflows	MTN use test workflows+fix tests and I	inter (#28) last year		
benchmark_utils	RFC only use jax as a backend for the benchmark (#42)3 months agoRFC only use jax as a backend for the benchmark (#42)3 months ago		hyperparameter-optimization bilevel-optimization datacleaning	
Config				
datasets	FIX deprecation of pip:->pip:: (#45) last month		-√- Activity	
figures	MTN update config files (#38) 7 months ago		E Custom properties	
solvers	FIX deprecation of pip:->pip:: (#45) last month		☆ 34 stars	
tests	RFC only use jax as a backend for the benchmark (#42) 3 months ago		양 6 forks	
🗋 .gitignore	CLN missing line .gitignore 2 years ago		Report repository	
C README.rst	expand readme last year		Releases	
C objective.py	FIX deprecation of pip:->pip:: (#45) last month		No releases published	
🗋 test_config.py	INIT bilevel optimization benchmark	3 years ago		
			Packages	

Benchmark of bilevel algorithms

- Open and reproducible benchmark •
- Benchopt ecosystem, Jax framework

T. Moreau et al. Benchopt: Reproducible, efficient and collaborative optimization benchmarks. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

\mathbf{C}	benchopt / benchmark_bilevel		Q Ty	pe 🕖 to search				
Code	💿 Issues 🖞 Pull requests 4 🕟 Actions 🖽 Projects 🕮 Wiki 😲 Security 🗠 Insights							
	benchmark_bilevel Public		🖒 Edit Pins 👻	⊙ Unwatch 5 -	°৺ Fork 6 👻 ★ Starred 34 👻			
	문 main ▾ 양 6 Branches ा 0 Tags	Q Go to file	t Add file	<> Code -	About			
	tomMoral FIX deprecation of pip:->pip:: (#45)		48314ad · last month	🕒 181 Commits	Benchmark for bi-level optimization solvers			
	.github/workflows	MTN use test workflows+fix tests and li	nter (#28)	last year	\mathcal{C} benchopt.github.io/results/benchmark			
	benchmark_utils	RFC only use jax as a backend for the b	enchmark (#42)	3 months ago	hyperparameter-optimization			
	Config	RFC only use jax as a backend for the b	enchmark (#42)	3 months ago	bilevel-optimization datacleaning			
	datasets	FIX deprecation of pip:->pip:: (#45)		last month	☐ Readme -∕- Activity			
	figures	MTN update config files (#38)		7 months ago	E Custom properties			
	solvers	FIX deprecation of pip:->pip:: (#45)		last month	☆ 34 stars ② 5 watching			
	tests	RFC only use jax as a backend for the b	enchmark (#42)	3 months ago	양 6 forks			
	🗋 .gitignore	CLN missing line .gitignore		2 years ago	Report repository			
	README.rst	expand readme		last year	Releases			
	bjective.py	FIX deprecation of pip:->pip:: (#45)		last month	No releases published			
	Test_config.py	INIT bilevel optimization benchmark		3 years ago				
					Packages			

Benchmark of bilevel algorithms

- Open and reproducible benchmark
- Benchopt ecosystem, Jax framework \bullet
- 17 solvers: stochastic, deterministic, • variance reduction, Hessian free...

T. Moreau et al. Benchopt: Reproducible, efficient and collaborative optimization benchmarks. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

\mathbf{C}	benchopt / benchmark_bilevel		Q Ty	pe 🕖 to search				
Code	💿 Issues 🖞 Pull requests 4 🕟 Actions 🖽 Projects 🕮 Wiki 😲 Security 🗠 Insights							
	benchmark_bilevel Public		🖒 Edit Pins 👻	⊙ Unwatch 5 -	°৺ Fork 6 👻 ★ Starred 34 👻			
	문 main ▾ 양 6 Branches ा 0 Tags	Q Go to file	t Add file	<> Code -	About			
	tomMoral FIX deprecation of pip:->pip:: (#45)		48314ad · last month	🕒 181 Commits	Benchmark for bi-level optimization solvers			
	.github/workflows	MTN use test workflows+fix tests and li	nter (#28)	last year	\mathcal{C} benchopt.github.io/results/benchmark			
	benchmark_utils	RFC only use jax as a backend for the b	enchmark (#42)	3 months ago	hyperparameter-optimization			
	Config	RFC only use jax as a backend for the b	enchmark (#42)	3 months ago	bilevel-optimization datacleaning			
	datasets	FIX deprecation of pip:->pip:: (#45)		last month	☐ Readme -∕- Activity			
	figures	MTN update config files (#38)		7 months ago	E Custom properties			
	solvers	FIX deprecation of pip:->pip:: (#45)		last month	☆ 34 stars ② 5 watching			
	tests	RFC only use jax as a backend for the b	enchmark (#42)	3 months ago	양 6 forks			
	🗋 .gitignore	CLN missing line .gitignore		2 years ago	Report repository			
	README.rst	expand readme		last year	Releases			
	bjective.py	FIX deprecation of pip:->pip:: (#45)		last month	No releases published			
	Test_config.py	INIT bilevel optimization benchmark		3 years ago				
					Packages			

Benchmark of bilevel algorithms

- Open and reproducible benchmark
- Benchopt ecosystem, Jax framework \bullet
- 17 solvers: stochastic, deterministic, variance reduction, Hessian free...
- 4 tasks: quadratics, hyperparameter selection with ICJNN1 and COVTYPE, data hypercleaning with MNIST

T. Moreau et al. Benchopt: Reproducible, efficient and collaborative optimization benchmarks. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

\mathbf{C}	benchopt / benchmark_bilevel		Q Ty	pe 🕖 to search				
Code	💿 Issues 🖞 Pull requests 4 🕟 Actions 🖽 Projects 🕮 Wiki 😲 Security 🗠 Insights							
	benchmark_bilevel Public		🖒 Edit Pins 👻	⊙ Unwatch 5 -	°৺ Fork 6 👻 ★ Starred 34 👻			
	문 main ▾ 양 6 Branches ा 0 Tags	Q Go to file	t Add file	<> Code -	About			
	tomMoral FIX deprecation of pip:->pip:: (#45)		48314ad · last month	🕒 181 Commits	Benchmark for bi-level optimization solvers			
	.github/workflows	MTN use test workflows+fix tests and li	nter (#28)	last year	\mathcal{C} benchopt.github.io/results/benchmark			
	benchmark_utils	RFC only use jax as a backend for the b	enchmark (#42)	3 months ago	hyperparameter-optimization			
	Config	RFC only use jax as a backend for the b	enchmark (#42)	3 months ago	bilevel-optimization datacleaning			
	datasets	FIX deprecation of pip:->pip:: (#45)		last month	☐ Readme -∕- Activity			
	figures	MTN update config files (#38)		7 months ago	E Custom properties			
	solvers	FIX deprecation of pip:->pip:: (#45)		last month	☆ 34 stars ② 5 watching			
	tests	RFC only use jax as a backend for the b	enchmark (#42)	3 months ago	양 6 forks			
	🗋 .gitignore	CLN missing line .gitignore		2 years ago	Report repository			
	README.rst	expand readme		last year	Releases			
	bjective.py	FIX deprecation of pip:->pip:: (#45)		last month	No releases published			
	Test_config.py	INIT bilevel optimization benchmark		3 years ago				
					Packages			

Setting

• Dataset: MNIST

- Dataset: MNIST
- Training samples with corrupted labels

- Dataset: MNIST
- Training samples with corrupted labels
- Idea: Give more weight to uncorrupted samples $g(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} \sigma(\lambda_i) \ell(\theta x_i^{\text{train}}, y_i^{\text{train}}) + C$ with $\sigma(\lambda_i) \in [0,1]$

$$\| C_r \| \theta \|^2$$

- Dataset: MNIST
- Training samples with corrupted labels
- Idea: Give more weight to uncorrupted samples $g(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} \sigma(\lambda_i) \ell(\theta x_i^{\text{train}}, y_i^{\text{train}}) + C_r \|\theta\|^2$ with $\sigma(\lambda_i) \in [0,1]$
- Weights are tuned by minimizing validation loss

- Dataset: MNIST
- Training samples with corrupted labels
- Idea: Give more weight to uncorrupted samples $g(\lambda, \theta) = \frac{1}{n} \sum_{i=1}^{n} \sigma(\lambda_i) \ell(\theta x_i^{\text{train}}, y_i^{\text{train}}) + C_r \|\theta\|^2$ with $\sigma(\lambda_i) \in [0,1]$
- Weights are tuned by minimizing validation loss $f(\theta^*(\lambda)) = \frac{1}{m} \sum_{i=1}^{m} \ell(\theta^*(\lambda) x_i^{\text{val}}, y_i^{\text{val}})$ j=1

Data hypercleaning

Conclusion and perpectives

Provided a modular algorithmic framework the bilevel setting

• Provided a modular algorithmic framework that enables to adapt single-level techniques to

- Provided a modular algorithmic framework the bilevel setting
- Instantiations of this framework yields si counterparts.

Provided a modular algorithmic framework that enables to adapt single-level techniques to

Instantiations of this framework yields similar oracle complexity to their single-level

- \bullet the bilevel setting
- lacksquarecounterparts.
- Provided a complexity lower bound for bilevel problems. ullet

Provided a modular algorithmic framework that enables to adapt single-level techniques to

Instantiations of this framework yields similar oracle complexity to their single-level

- the bilevel setting
- \bullet counterparts.
- Provided a complexity lower bound for bilevel problems. lacksquare
- Provided an open benchmark to compare bilevel algorithms \bullet

Provided a modular algorithmic framework that enables to adapt single-level techniques to

Instantiations of this framework yields similar oracle complexity to their single-level

Sensitivity to the step sizes choice

• Sensitivity to the step sizes choice

ullet

Generalization performances of gradient-based hyperparameter selection procedures

• Sensitivity to the step sizes choice

ullet

• problems with non-strongly convex inner functions

Generalization performances of gradient-based hyperparameter selection procedures

Understanding performances of implicit differentiation-based techniques when apply to

Thanks for your attention!!!

Conference papers

- variance reduction algorithm. In Advances in Neural Information Processing Systems (NeurIPS), 2022. Oral
- ► Minimization. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2024.
- Information Processing Systems (NeurIPS), 2022.

Miscellaneous

Spotlight

M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. A framework for bilevel optimization that enables stochastic and global

M. Dagréou, T. Moreau, S. Vaiter, P. Ablin. A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk

• T. Moreau et al. Benchopt: Reproducible, efficient and collaborative optimization benchmarks. In Advances in Neural

M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. How to compute Hessian-vector products? In ICLR blogpost track, 2024.

