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Value function Outer function

Inner function Outer variable
Inner variable

• Generally nonconvex eventhough    and    
are convex 

• This definition assumes the uniqueness of 
the inner solution

• Non-uniqueness leads to dramatically hard 
problems[Bolte et al. ’24]
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Learning = Solving an optimization problem
• Training samples                              , prediction 

function               .
• Empirical Risk Minimization

• Solution  found by running SGD[Robbins & Monro ’54]

• There are hyperparameters, e.g. regularization

• The learnt parameter          depends on 
•  selected by minimizing the validation loss

Bilevel problem 
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The problem with the grid search

7

Curse of dimensionality 
The number of function evaluations scales 
exponentially with the dimension

Grid search 
1.  Define a grid of candidates     
2.  Train the model to get   
3.  Select the one that minimizes the value 

function 
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Gradient descent on  

Differentiable?

How to compute it?

Complexity
✓ Number of gradient computations to 

reach an -stationary point if  is smooth:

Independent from the 
input dimension
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ML setting: Empirical Risk Minimization 

Implicit differentiation in practice

10

Implicit gradient 

Can we build an unbiased estimate of             ?
No straightforward answer since…

Bottlenecks
• Solution of the inner problem
• Solution of a linear system
• Computing a gradient is expensive 

Stochastic optimization[Robbins & Monro ’51] 

Cheap estimator of  



A framework for bilevel optimization 
that enables stochastic and global 
variance reduction algorithms

M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. A framework for bilevel optimization that enables 
stochastic and global variance reduction algorithm. In Advances in Neural Information 
Processing Systems (NeurIPS), 2022. Oral
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Implicit gradient 

Main idea: Update ,  and  in the following directions: 
• : 
• : 
• : 

Goes towards 
Goes towards 
Approximate gradient step

Same step size in  and  because same conditioning 

Bilevel Dynamics 
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Framework for stochastic bilevel optimization
ERM 

Linear in   and  
SOBA directions 
Sample                       and                        and 
set
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Iteration cost

• Gradients: computed efficiently by reverse mode automatic differentiation [Linnainmaa et al. ‘70]

• HVPs: At first sight 😱 😱 😱 😱, but…
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The HVP cost scales as the gradient cost!!!
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Convergence of SOBA

16

Theorem
Assume that 

1. the outer function    is twice differentiable with Lipschitz derivatives 
2. the inner function    is three times differentiable with Lipschitz derivatives 
3. the stochastic directions verify

Then, for step sizes               and                it holds

Similar to the rate of SGD for non-
convex smooth functions [Ghadimi ’13]
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Variance terms prevent from converging if not converging towards 0
• Make the step sizes decreasing -> leads to slow convergence
• Make the variance decrease? -> Variance reduction algorithms[Johnson et al. 13, Defazio et al. ’14, Bietti & Mairal ‘17]
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Reinitialization of estimate 
directions 

19

General principle
• Adaptation of SARAH/SPIDER to bilevel 

setting [Nguyen et al. ’17, Fang et al. ’18]

• Recursive estimate of the directions
• Periodic reinitialization of the estimate

Unbiased estimators of the directions

Full batch directions

Inner loop index
Outer loop index
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Theorem
Assume that 

1. the outer function     is twice differentiable with Lipschitz derivatives 
2. the inner function    is three times differentiable with Lipschitz derivatives 

Then, for constant step sizes proportional to                 ,

calls to oracles are sufficient to find an -stationary point

Similar to the rate of SARAH for non-
convex smooth finite sums [Nguyen ’22]
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M. Dagréou, T. Moreau, S. Vaiter, P. Ablin. A Lower Bound and a Near-Optimal Algorithm

for Bilevel Empirical Risk Minimization. In International Conference on Artificial Intelligence and 
Statistics (AISTATS), 2024.
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A detour by single-level optimization
Finite sum minimization setting 

23

Algorithm class 

Upper bound [Nguyen ’22] 
There exists an algorithm which is able to 
find an -stationary point of any function  
in less than 




oracle calls.-smooth

Lower bound [Zhou et al. ’19] 
Given an algorithm  we can find a 
function  such that  requires at least 




oracle calls to find an -stationary point.
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Why does single-level results do not extend directly to bilevel problems?

A single-level problem is a bilevel problem

24

We could expect a higher lower bound 

Algorithm classes

• Single-level analysis assumes that we 
sample gradients of  

• Classical bilevel algorithms do not have 
access to the exact value of this gradient

We need a specific algorithm class
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Update directions 
•  

•  

•  

Linear Bilevel Algorithm 

• Contains several several bilevel 
algorithms

• But excludes non-linear 
subroutines like Neumann 
iterations
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Bilevel Optimization Problem Empirical Risk Minimization 

Lipschitz gradient

Twice differentiable, 

Strongly convex
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Theorem (informal) 
For any linear bilevel algorithm, for a large enough dimension       we can find an instantiation 
of bilevel ERM problem such that such that finding a point   that verifies                              


requires at least                    gradient/HVP/JVP computations.

• Similar to result of finite sum minimization in nonconvex setting [Zhou et al. ’19] 

• Still missing the dependency on the inner number of samples
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Benchmark of bilevel algorithms

29

• Open and reproducible benchmark

• Benchopt ecosystem, Jax framework

• 17 solvers: stochastic, deterministic, 
variance reduction, Hessian free…

• 4 tasks: quadratics, hyperparameter 
selection with ICJNN1 and COVTYPE, 
data hypercleaning with MNIST

T. Moreau et al. Benchopt: Reproducible, efficient and collaborative optimization benchmarks. In 
Advances in Neural Information Processing Systems (NeurIPS), 2022.
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Data hypercleaning[Franceschi et al. ’17]

Setting
• Dataset: MNIST

• Training samples with corrupted labels

• Idea: Give more weight to uncorrupted samples

with 

• Weights are tuned by minimizing validation loss

 

30 Correct labels
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Conclusion

• Provided a modular algorithmic framework that enables to adapt single-level techniques to 
the bilevel setting

• Instantiations of this framework yields similar oracle complexity to their single-level 
counterparts.

• Provided a complexity lower bound for bilevel problems.

• Provided an open benchmark to compare bilevel algorithms
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Perspectives/Open questions

• Sensitivity to the step sizes choice

• Generalization performances of gradient-based hyperparameter selection procedures

• Understanding performances of implicit differentiation-based techniques when apply to 
problems with non-strongly convex inner functions
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Thanks for your attention!!!
Conference papers 

‣ M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. A framework for bilevel optimization that enables stochastic and global 
variance reduction algorithm. In Advances in Neural Information Processing Systems (NeurIPS), 2022. Oral


‣ M. Dagréou, T. Moreau, S. Vaiter, P. Ablin. A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk 
Minimization. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2024. 


‣ T. Moreau et al. Benchopt: Reproducible, efficient and collaborative optimization benchmarks. In Advances in Neural 
Information Processing Systems (NeurIPS), 2022.


Miscellaneous 
‣ M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. How to compute Hessian-vector products? In ICLR blogpost track, 2024. 

Spotlight
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https://matdag.github.io/publication/benchopt/

